92 lines
2.1 KiB
Java
92 lines
2.1 KiB
Java
// Given an array arr[] of N non-negative integers representing the height of blocks.
|
|
// If width of each block is 1, compute how much water can be trapped between the blocks during the rainy season.
|
|
|
|
//Time Complexity: O(N)
|
|
//Auxiliary Space: O(1)
|
|
|
|
import java.io.*;
|
|
import java.util.*;
|
|
import java.lang.*;
|
|
|
|
|
|
class Main {
|
|
|
|
public static void main (String[] args) throws IOException {
|
|
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
|
|
int t = Integer.parseInt(br.readLine().trim()); //Inputting the testcases
|
|
while(t-->0){
|
|
|
|
//size of array
|
|
int n = Integer.parseInt(br.readLine().trim());
|
|
int arr[] = new int[n];
|
|
String inputLine[] = br.readLine().trim().split(" ");
|
|
|
|
//adding elements to the array
|
|
for(int i=0; i<n; i++){
|
|
arr[i] = Integer.parseInt(inputLine[i]);
|
|
}
|
|
|
|
Solution obj = new Solution();
|
|
|
|
//calling trappingWater() function
|
|
System.out.println(obj.trappingWater(arr, n));
|
|
}
|
|
}
|
|
}
|
|
|
|
class Solution{
|
|
|
|
// arr: input array
|
|
// n: size of array
|
|
// Function to find the trapped water between the blocks.
|
|
static int trappingWater(int arr[], int n) {
|
|
// initialize output
|
|
int result = 0;
|
|
|
|
// maximum element on left and right
|
|
int left_max = 0, right_max = 0;
|
|
|
|
// indices to traverse the array
|
|
int lo = 0, hi = n - 1;
|
|
|
|
while (lo <= hi) {
|
|
if (arr[lo] < arr[hi]) {
|
|
if (arr[lo] > left_max)
|
|
// update max in left
|
|
left_max = arr[lo];
|
|
else
|
|
// water on curr element = max - curr
|
|
result += left_max - arr[lo];
|
|
lo++;
|
|
}
|
|
else {
|
|
if (arr[hi] > right_max)
|
|
// update right maximum
|
|
right_max = arr[hi];
|
|
else
|
|
result += right_max - arr[hi];
|
|
hi--;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/* Test Case:
|
|
Input:
|
|
N = 6
|
|
arr[] = {3,0,0,2,0,4}
|
|
Output:
|
|
10
|
|
Explanation:
|
|
____|
|
|
| |
|
|
| | |
|
|
| | |
|
|
300204
|
|
|
|
Total Water Trapped: 3+3+1+3 = 10
|
|
*/
|
|
|