DSA/fsa_pattern.py

78 lines
1.5 KiB
Python

# Python program for Finite State Automaton
# Pattern searching Algorithm
NO_OF_CHARS = 256
def getNextState(pat, M, state, x):
'''
calculate the next state
'''
# If the character c is same as next character
# in pattern, then simply increment state
if state < M and x == ord(pat[state]):
return state+1
i=0
# ns stores the result which is next state
# ns finally contains the longest prefix
# which is also suffix in "pat[0..state-1]c"
# Start from the largest possible value and
# stop when you find a prefix which is also suffix
for ns in range(state,0,-1):
if ord(pat[ns-1]) == x:
while(i<ns-1):
if pat[i] != pat[state-ns+1+i]:
break
i+=1
if i == ns-1:
return ns
return 0
def computeTF(pat, M):
'''
This function builds the TF table which
represents Finite Automaton for a given pattern
'''
global NO_OF_CHARS
TF = [[0 for i in range(NO_OF_CHARS)]\
for _ in range(M+1)]
for state in range(M+1):
for x in range(NO_OF_CHARS):
z = getNextState(pat, M, state, x)
TF[state][x] = z
return TF
def search(pat, txt):
'''
Prints all occurrences of pat in txt
'''
global NO_OF_CHARS
M = len(pat)
N = len(txt)
TF = computeTF(pat, M)
# Process txt over FA.
state=0
for i in range(N):
state = TF[state][ord(txt[i])]
if state == M:
print("Pattern found at index: {}".\
format(i-M+1))
# Driver program to test above function
if __name__ == '__main__':
txt = "AABAACAADAABAAABAA"
pat = "AABA"
search(pat,txt)