DSA/algorithms/CPlusPlus/Graphs/kruskal-algorithm.cpp

172 lines
3.3 KiB
C++

//Graph Kruskal algorithm
#include <bits/stdc++.h>
using namespace std;
class Edge {
public:
int src, dest, weight;
};
class Graph {
public:
int V, E;
Edge* edge;
};
// Creates a graph with V vertices and E edges
Graph* createGraph(int V, int E)
{
Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[E];
return graph;
}
// A structure to represent a subset for union-find
class subset {
public:
int parent;
int rank;
};
int find(subset subsets[], int i)
{
// find root and make root as parent of i
// (path compression)
if (subsets[i].parent != i)
subsets[i].parent
= find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high
// rank tree (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and
// increment its rank by one
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
Edge* a1 = (Edge*)a;
Edge* b1 = (Edge*)b;
return a1->weight > b1->weight;
}
// The main function to construct MST using Kruskal's
// algorithm
void KruskalMST(Graph* graph)
{
int V = graph->V;
Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0;
qsort(graph->edge, graph->E, sizeof(graph->edge[0]),
myComp);
// Allocate memory for creating V ssubsets
subset* subsets = new subset[(V * sizeof(subset))];
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
while (e < V - 1 && i < graph->E)
{
Edge next_edge = graph->edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
cout << "Following are the edges in the "
"MST\n";
int minimumCost = 0;
for (i = 0; i < e; ++i)
{
cout << result[i].src << " -- " << result[i].dest
<< " == " << result[i].weight << endl;
minimumCost = minimumCost + result[i].weight;
}
cout << "Minimum Cost Spanning Tree: " << minimumCost
<< endl;
}
// Helper function which takes in src, dest, weight, index, address of graph as an argument
// to update the value of graph for respective index
void updateGraph(int s, int d, int w, int idx, Graph** graph){
graph->edge[idx].src = s;
graph->edge[idx].dest = d;
graph->edge[idx].weight = w;
}
// Driver code
int main()
{
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
Graph* graph = createGraph(V, E);
// add edge 0-1
updateGraph(0, 1, 10, 0, &graph);
// add edge 0-2
updateGraph(0, 2, 6, 1, &graph);
// add edge 0-3
updateGraph(0, 3, 5, 2, &graph);
// add edge 1-3
updateGraph(1, 3, 15, 3, &graph);
// add edge 2-3
updateGraph(2, 3, 4, 4, &graph);
KruskalMST(graph);
return 0;
}