DSA/algorithms/CPlusPlus/Trees/Fenwick_Tree.cpp

103 lines
1.8 KiB
C++

#include <bits/stdc++.h>
using namespace std;
//BIT with 1 based indexing
template <typename T>
struct BIT
{
T N;
vector<T> tree;
void init(int n)
{
N = n;
tree.assign(n + 1, 0);
}
//point update in O(log(n))
void update(int idx, T val)
{
while (idx <= N)
{
tree[idx - 1] += val;
idx += (idx & (-idx));
}
}
//query in O(log(n))
T query(int idx)
{
T sm = 0;
while (idx > 0)
{
sm += tree[idx - 1];
idx -= (idx & (-idx));
}
return sm;
}
//sum function to find sum of values [l,r]
T sum(int l, int r)
{
return query(r) - query(l - 1);
}
};
int main()
{
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++)
{
cin >> v[i];
}
BIT<int> f;
f.init(n + 1); //1 base indexing
//Building of Fenwick Tree in O(n*(log(n)))
for (int i = 0; i < n; i++)
{
f.update(i + 1, v[i]);
}
//queries
int q;
cin >> q;
while (q--)
{
int t;
//two types of queries
//1) t = 1 change element at index i to u
//2) t = 2 print the sum of elements in range [l,r]
cin >> t;
if (t == 1)
{
int id, u;
cin >> id >> u;
id--; //changing to zero base
int initial = v[id];
f.update(id + 1, u - initial); //updating the delta
v[id] = u;
}
else
{
int l, r;
cin >> l >> r;
cout << f.sum(l, r) << endl;
}
}
}
// Time Complexity:
// O(nlogn)
// Space Complexity:
// O(n)
// Test Cases:
// Input:
// 5
// 1 3 4 7 -15
// 3
// 2 2 5
// 1 3 -5
// 2 2 5
// Output:
// -1
// -10