237 lines
8.6 KiB
Python
237 lines
8.6 KiB
Python
# author: @hashfx
|
|
|
|
# Binary Tree Data Structure
|
|
# Data is stored in hierarchical form where a parent node can have at most 2 child nodes
|
|
#
|
|
# A
|
|
# ___|___
|
|
# B C
|
|
# ___|___
|
|
# D E
|
|
# / \ \
|
|
# F G H
|
|
#
|
|
# Here, A is "ROOT NODE" and B, C are "CHILD NODE"
|
|
# (B-D-F-G), (B-E-H) is a sub-tree
|
|
# B is 'ROOT NODE' for D, E & D is 'ROOT NODE' for F, G & E is root node for H
|
|
# Those nodes [C, F, G, H] who do not have any child node are "LEAF NODE"
|
|
#
|
|
# Rules for Binary Search Tree:
|
|
# > All nodes are unique
|
|
# > Right sub-tree > Left sub-tree ===== Left sub-tree < Right sub-tree
|
|
# [Value(B<A AND C>A), Value(D<B AND E>B), Value(F<D AND G>D), Value(H>E)]
|
|
# > One parent node can not have more than 2 child nodes
|
|
# > Elements are not duplicated
|
|
# Searching in Binary Tree:
|
|
# Suppose we want to search E in the Tree:
|
|
# > At Root Node(A) :: IF A>E THEN element would be at Left sub-Tree
|
|
# > At Left sub-Tree(B) :: IF B<E THEN element would be at Right of the sub-tree
|
|
#
|
|
# Significance of BST:
|
|
# With every iteration, search space is reduced by 1/2 (half)
|
|
# Let no of nodes in a tree (n) be 8 then:
|
|
# n = 8 [8->4->2->1] {Search completed in 3 iterations}
|
|
# 3 compared to 8 is log(2)8 = 2
|
|
# Search Complexity : O(log n)
|
|
# Insertion Complexity : O(log n)
|
|
#
|
|
#
|
|
# Types of BST:
|
|
# Breadth First Search
|
|
#
|
|
#
|
|
# Depth First Search
|
|
# order here means base node
|
|
# > In Order Traversal : first visit left sub-tree >> root node >> right sub-tree [F-D-G-B-H-E-A-C]
|
|
# {Root node in between left and right tree}
|
|
# > Pre Order Traversal : root node >> left sub-tree >> right sub-tree [A-B-D-F-G-E-H-C]
|
|
# {Root node before left and right tree}
|
|
# > Post Order Traversal : left sub-tree >> right sub-tree >> root node [F-G-D-H-E-B-C-A]
|
|
# {Root node after left and right tree}
|
|
|
|
|
|
class Node:
|
|
# constructor
|
|
def __init__(self, data):
|
|
self.data = data
|
|
self.left = None
|
|
self.right = None
|
|
|
|
|
|
def add_child(self, data):
|
|
"""Insert data as child in Tree"""
|
|
|
|
# checking if entered data is already present
|
|
if data == self.data:
|
|
return
|
|
|
|
# if tree is empty means no node(root) at tree else incoming data will be treated as node(root(tree))
|
|
if self.data:
|
|
''' check if data(right) > data(left) & node(parent)'''
|
|
if data < self.data: # data is smaller than data of node(parent)
|
|
if self.left is None: # and if no element is present at left of node
|
|
self.left = Node(data) # insert data at left
|
|
else:
|
|
self.left.add_child(data) # consider node(left) {current node} as node(root)
|
|
|
|
elif data > self.data: # if data is greater than root node
|
|
if self.right is None: # and if no data(right) is None
|
|
self.right = Node(data) # insert data at right of node(parent)
|
|
else: # if data is already present at right of node
|
|
self.right.add_child(data) # consider node(right) {current node} as node(root)
|
|
else:
|
|
self.data = data # if tree is empty; treat incoming data as root of the tree
|
|
|
|
|
|
def InOrderTraversal(self):
|
|
elements = [] # list to be filled with all elements of BST in specific order
|
|
|
|
# In-order-Traversal : left sub-tree >> root node >> right sub-tree
|
|
if self.left: # put elements of left sub-tree in list[elements]
|
|
elements += self.left.InOrderTraversal()
|
|
|
|
elements.append(self.data) # put root node data in list[elements]
|
|
|
|
if self.right: # put elements of right sub-tree in list[elements]
|
|
elements += self.right.InOrderTraversal()
|
|
|
|
return elements # return list[elements]
|
|
|
|
|
|
def PreOrderTraversal(self):
|
|
elements = []
|
|
|
|
# Pre-Order-Traversal : root node >> left sub-tree >> right sub-tree
|
|
|
|
elements.append(self.data) # put root node data in list[elements]
|
|
|
|
if self.left: # put elements of left sub-tree in list[elements]
|
|
elements += self.left.InOrderTraversal()
|
|
|
|
if self.right: # put elements of right sub-tree in list[elements]
|
|
elements += self.right.InOrderTraversal()
|
|
|
|
return elements # return list[elements]
|
|
|
|
def PostOrderTraversal(self):
|
|
elements = []
|
|
|
|
# Pre-Order-Traversal : left sub-tree >> right sub-tree >> root node
|
|
|
|
if self.left: # put elements of left sub-tree in list[elements]
|
|
elements += self.left.InOrderTraversal()
|
|
|
|
if self.right: # put elements of right sub-tree in list[elements]
|
|
elements += self.right.InOrderTraversal()
|
|
|
|
elements.append(self.data) # put root node data in list[elements]
|
|
|
|
return elements # return list[elements]
|
|
|
|
def search(self, val):
|
|
""" Search element in binary search tree"""
|
|
if self.data == val:
|
|
return True
|
|
|
|
if val < self.data:
|
|
# search for val in left sub-tree
|
|
if self.left:
|
|
return self.left.search(val)
|
|
else:
|
|
return False
|
|
|
|
if val > self.data:
|
|
# search for val in right sub-tree
|
|
if self.right:
|
|
return self.right.search(val)
|
|
else:
|
|
return False
|
|
|
|
def max(self):
|
|
'''Maximum element of tree: keep searching on right sub-tree to find maximum element '''
|
|
if self.right is None: # leaf node
|
|
return self.data
|
|
return self.right.max()
|
|
|
|
|
|
def min(self):
|
|
''' Minimum element of tree: keep searching on left sub-tree to find minimum element '''
|
|
if self.left is None: # leaf node
|
|
return self.data
|
|
return self.left.min()
|
|
|
|
|
|
def delete(self, val):
|
|
if val < self.data: # search for element in left sub-tree
|
|
if self.left: # check if there is any left sub-tree
|
|
self.left = self.left.delete(val) # delete recursion
|
|
elif val > self.data: # search for element in right sub-tree
|
|
if self.right: # check if there is any right sub-tree
|
|
self.right = self.right.delete(val) # delete recursion
|
|
else:
|
|
if self.left is None and self.right is None: # if left & right sub-tree are empty
|
|
return None
|
|
if self.left is None: # right sub-tree is present but not left sub-tree
|
|
return self.right # return right sub-tree-child
|
|
if self.right is None: # left sub-tree is present but not right sub-tree
|
|
return self.right # return left sub-tree-child
|
|
|
|
min_val = self.right.min() # find minimuum element from right sub-tree
|
|
self.data = min_val #
|
|
self.right = self.right.delete(min_val)
|
|
|
|
return self
|
|
|
|
|
|
def display(self):
|
|
""" Display tree """
|
|
if self.left:
|
|
self.left.display() # display tree(left)
|
|
print(self.data) # display node(root)
|
|
if self.right:
|
|
self.right.display() # display tree(right)
|
|
|
|
|
|
def build_tree(elements):
|
|
root = Node(elements[0])
|
|
|
|
for i in range(1, len(elements)):
|
|
root.add_child(elements[i])
|
|
return root
|
|
|
|
|
|
# If build_tree() is not used
|
|
# root = Node(4)
|
|
# root.add_child(6)
|
|
# root.add_child(7)
|
|
# root.add_child(2)
|
|
# root.add_child(3)
|
|
# root.add_child(8)
|
|
# root.add_child(5)
|
|
|
|
''' smaller elements will be displayed at left/top of root node <--> greater elements will be displayed at
|
|
right/bottom of root node '''
|
|
# root.display()
|
|
|
|
# main method
|
|
if __name__ == '__main__':
|
|
|
|
# Numeric BST
|
|
num_list = [20, 18, 37, 15, 7, 5, 9, 18, 24, 0] # repeated elements are removed
|
|
list_tree = build_tree(num_list)
|
|
print(list_tree.InOrderTraversal()) # return list in sorted order
|
|
print(list_tree.PreOrderTraversal()) # return list in sorted order
|
|
print(list_tree.PostOrderTraversal()) # return list in sorted order
|
|
# list_tree.display() # display tree using display function
|
|
print(list_tree.search(20)) # True
|
|
print(list_tree.search(4)) # False
|
|
list_tree.delete(20)
|
|
print("Deleted element: ", list_tree.InOrderTraversal())
|
|
|
|
# String BST
|
|
country = ["India", "Australia", "France", "Japan", "Sweden"]
|
|
country_tree = build_tree(country)
|
|
print(country_tree.InOrderTraversal()) # return list in sorted order
|
|
print(country_tree.search("UK")) # False
|
|
print(country_tree.search("Japan")) # True
|