84 lines
2.2 KiB
Java
84 lines
2.2 KiB
Java
/** Problem Description :
|
||
* You are given a number N. Find the total count of set bits for all numbers from 1 to N
|
||
* including 1 and N
|
||
*/
|
||
|
||
|
||
/**
|
||
* Author : Suraj Kumar
|
||
* Github : https://github.com/skmodi649
|
||
*/
|
||
|
||
|
||
/** ALGORITHM :
|
||
* So, we will iterate till the number of bits in the number.
|
||
* And we don’t have to iterate every single number in the range from 1 to n.
|
||
* We will perform the following operations to get the desired result.
|
||
* The quotient when n+1 is divided by 2 will return the number of times the 0,1 pattern has appeared at LSB.
|
||
* However, the quotient when n+1 is divided by 4 will return the number of times the 0,0,1,1 pattern has
|
||
* appeared at 2nd least significant bit and so on.
|
||
*/
|
||
|
||
|
||
/** TEST CASES :
|
||
* Test Case 1 :
|
||
* Input: N = 4
|
||
* Output: 5
|
||
*
|
||
* Test Case 2 :
|
||
* Input: N = 17
|
||
* Output: 35
|
||
*/
|
||
|
||
import java.util.*;
|
||
import java.lang.*;
|
||
|
||
|
||
class Solution {
|
||
|
||
//Function to return sum of count of set bits in the integers from 1 to n.
|
||
public static int countSetBits(int n) {
|
||
int count = 0 , i = 1 , val = 0;
|
||
while ((n + 1) / (int) Math.pow(2, i) != 0) {
|
||
int k = (n + 1) % (int) Math.pow(2, i);
|
||
val = (n + 1) / (int) Math.pow(2, i);
|
||
int c = (int) Math.pow(2, i - 1);
|
||
count = count + c * val;
|
||
if (k > ((int) Math.pow(2, i) / 2)) {
|
||
count = count + (k - ((int) Math.pow(2, i) / 2));
|
||
}
|
||
i++;
|
||
}
|
||
int temp = (int) Math.pow(2, i);
|
||
count += (n + 1 - temp / 2);
|
||
return count;
|
||
}
|
||
|
||
public static void main(String[] args){
|
||
Scanner sc = new Scanner(System.in);
|
||
System.out.println("Enter the number :");
|
||
int n = sc.nextInt();//input n
|
||
|
||
Solution obj = new Solution();
|
||
System.out.println("Total set bits : "+obj.countSetBits(n)); // calling countSetBits method
|
||
System.out.println(); // changing the line
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/** Explanation for N = 4
|
||
* For numbers from 1 to 4.
|
||
* For 1: 0 0 1 = 1 set bits
|
||
* For 2: 0 1 0 = 1 set bits
|
||
* For 3: 0 1 1 = 2 set bits
|
||
* For 4: 1 0 0 = 1 set bits
|
||
* Therefore, the total set bits is 5.
|
||
*/
|
||
|
||
|
||
/** Time Complexity : O(log N)
|
||
* Auxiliary Space Complexity : O(1)
|
||
* Constraints : 1 ≤ N ≤ 10^8
|
||
*/
|