DSA/algorithms/Java/strings/Longest_common_substring.java

69 lines
1.7 KiB
Java

// Java implementation of
// finding length of longest
// Common substring using
// Dynamic Programming
class GFG {
/*
Returns length of longest common substring
of X[0..m-1] and Y[0..n-1]
*/
static int LCSubStr(char X[], char Y[], int m, int n)
{
// Create a table to store
// lengths of longest common
// suffixes of substrings.
// Note that LCSuff[i][j]
// contains length of longest
// common suffix of
// X[0..i-1] and Y[0..j-1].
// The first row and first
// column entries have no
// logical meaning, they are
// used only for simplicity of program
int LCStuff[][] = new int[m + 1][n + 1];
// To store length of the longest
// common substring
int result = 0;
// Following steps build
// LCSuff[m+1][n+1] in bottom up fashion
for (int i = 0; i <= m; i++)
{
for (int j = 0; j <= n; j++)
{
if (i == 0 || j == 0)
LCStuff[i][j] = 0;
else if (X[i - 1] == Y[j - 1])
{
LCStuff[i][j] = LCStuff[i - 1][j - 1] + 1;
result = Integer.max(result, LCStuff[i][j]);
}
else
LCStuff[i][j] = 0;
}
}
return result;
}
// Driver Code
public static void main(String[] args)
{
// Test 1:
String X = "abcdabaabbacd";
String Y = "abbabaabcabcd";
int m = X.length();
int n = Y.length();
System.out.println(LCSubStr(X.toCharArray(), Y.toCharArray(), m, n));
// Test 2:
String X = "abcdefgh";
String Y = "abaabcfg";
int m = X.length();
int n = Y.length();
System.out.println(LCSubStr(X.toCharArray(), Y.toCharArray(), m, n));
}
}
// Time Complexity -> O(m*n)
// where m and n are the lengths of the strings X and Y.