2.0 KiB
2.0 KiB
Quick Sort
- Time Complexity: O(n^2) occurs when the picked pivot is always an extreme (smallest or largest) element.
- Space Complexity: O(n).
- Applications: Commercial computing, search for information, operations research, event-driven simulation, numerical computations, combinatorial search.
- Founder's Name: Tony Hoare
Steps
- Consider the last element of the list as pivot.
- Define two variables i and j. Set i and j to first and last elements of the list.
- Increment i until list[i] > pivot then stop.
- Decrement j until list[j] < pivot then stop.
- If i < j then exchange list[i] and list[j].
- Repeat steps 3,4 and 5 until i > j.
- Exchange the pivot element with list[j] element.
Example
Given array : [10, 80, 30, 90, 40, 50, 70]
Pivot (last element) : 70
1. 10 < 70 then i++ and swap(list[i],list[j]): [10, 80, 30, 90, 40, 50, 70]
2. 80 < 70, then no actions needed: [10, 80, 30, 90, 40, 50, 70]
3. 30 < 70 then i++ and swap(list[i],list[j]): [10, 30, 80, 90, 40, 50, 70]
4. 90 < 70, then no actions needed: [10, 30, 80, 90, 40, 50, 70]
5. 40 < 70 then i++ and swap(list[i],list[j]): [10, 30, 40, 90, 80, 50, 70]
6. 50 < 70 then i++ and swap(list[i],list[j]): [10, 30, 40, 50, 80, 90, 70]
7. Swap list[i+1] and pivot: [10, 30, 40, 50, 70, 90, 80]
8. Quick sort the left part of the pivot: [10, 30, 40, 50]
9. Quick sort the right part of the pivot: [70, 80, 90]
10. Sorted Array: [10, 30, 40, 50, 70, 80, 90]
Implementation
Video URL
Youtube Video about Quick Sort