DSA/docs/en/Sorting/Quick-Sort.md

2.0 KiB

Quick Sort

  1. Time Complexity: O(n^2) occurs when the picked pivot is always an extreme (smallest or largest) element.
  2. Space Complexity: O(n).
  3. Applications: Commercial computing, search for information, operations research, event-driven simulation, numerical computations, combinatorial search.
  4. Founder's Name: Tony Hoare

Steps

  1. Consider the last element of the list as pivot.
  2. Define two variables i and j. Set i and j to first and last elements of the list.
  3. Increment i until list[i] > pivot then stop.
  4. Decrement j until list[j] < pivot then stop.
  5. If i < j then exchange list[i] and list[j].
  6. Repeat steps 3,4 and 5 until i > j.
  7. Exchange the pivot element with list[j] element.

Example

Given array : [10, 80, 30, 90, 40, 50, 70]

Pivot (last element) : 70

1. 10 < 70 then i++ and swap(list[i],list[j]): [10, 80, 30, 90, 40, 50, 70]

2. 80 < 70, then no actions needed: [10, 80, 30, 90, 40, 50, 70]

3. 30 < 70 then i++ and swap(list[i],list[j]): [10, 30, 80, 90, 40, 50, 70]

4. 90 < 70, then no actions needed: [10, 30, 80, 90, 40, 50, 70]

5. 40 < 70 then i++ and swap(list[i],list[j]): [10, 30, 40, 90, 80, 50, 70]

6. 50 < 70 then i++ and swap(list[i],list[j]): [10, 30, 40, 50, 80, 90, 70]

7. Swap list[i+1] and pivot: [10, 30, 40, 50, 70, 90, 80]

8. Quick sort the left part of the pivot: [10, 30, 40, 50]

9. Quick sort the right part of the pivot: [70, 80, 90]

10. Sorted Array: [10, 30, 40, 50, 70, 80, 90]

Implementation

Video URL

Youtube Video about Quick Sort

Others

Wikipedia