DSA/algorithms/CPlusPlus/Graphs/dijkstra.cpp

99 lines
2.7 KiB
C++

//Dijkstra's algorithm
//implemented in the context of a directed graph
#include <bits/stdc++.h>
using namespace std;
int dijkstra(vector<vector<pair<int,int>>>& graph, int start, int end){
//return value(-1 if endpoint is unreachable)
int ret=-1;
//storing cost(distance) of each vertex, set initial value as -1
vector<int> dist(graph.size(),-1);
//priority queue to store traversing vertices and cost values
//data will be stored in the format of: {cost, current vertex}
//entry with minimum cost will always be on top
priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> pq;
pq.push({0,start});
while(!pq.empty()){
int cVertex, cCost;
tie(cCost,cVertex) = pq.top();
pq.pop();
//vertex already visited with lower cost -> continue
if(dist[cVertex]!=-1&&dist[cVertex]<=cCost)continue;
//otherwise we update our current cost(distance)
dist[cVertex]=cCost;
if(cVertex==end){
ret=cCost;
break;
}
for(pair<int,int> nPair : graph[cVertex]){
int nVertex, nCost;
tie(nVertex,nCost) = nPair;
if(dist[nVertex]!=-1&&dist[nVertex]<=cCost+nCost){
//the next vertex has already been traversed with lower cost
continue;
}
//otherwise we add a new entry to the priority queue
pq.push({nCost+cCost,nVertex});
}
}
return ret;
}
int main(){
//number of vertices(V) and edges(E)
int V, E;
cout << "Enter the number of vertices: ";
cin >> V;
cout << "Enter the number of edges: ";
cin >> E;
cout << "Enter each edge information in the format of: \n";
cout << "(Source vertex number) (Destination vertex number) (cost)\n";
//Adjacency list
//data will be stored in the format of: {destination,cost}
//with the first index as the source
vector<vector<pair<int,int>>> graph(V+1,vector<pair<int,int>>());
while(E--){
int source, dest, cost;
cin >> source >> dest >> cost;
graph[source].push_back({dest,cost});
}
//starting point(start), ending point(end)
int start, end;
cout << "Enter the starting point: ";
cin >> start;
cout << "Enter the ending point: ";
cin >> end;
int answer = dijkstra(graph,start,end);
if(answer==-1){
cout << "Shortest path from " << start << " to " << end << " does not exist." << endl;
}
else
cout << "The minimum cost for the shortest path is: " << answer << endl;
}
//Time complexity: O(ElogV)
//Space complexity: O(V+E)
/*
Sample Input
5
8
1 2 2
1 3 3
1 4 1
1 5 10
2 4 2
3 4 1
3 5 1
4 5 3
1
5
Output(minimum cost)
4
*/