88 lines
2.3 KiB
C++
88 lines
2.3 KiB
C++
// Program to detect whether a graph contains a cycle. The vertices of the graph are
|
|
// placed in disjoint sets. As each edge is iterated through, the subset of the two
|
|
// vertices is determined. If the subsets are the same, then a cycle is found.
|
|
// Otherwise, the algorithm will join the two subsets together and repeat the process
|
|
// until each edge is iterated through or a cycle is found.
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// Edge list implementation of unweighted, undirected graph
|
|
class Graph
|
|
{
|
|
private:
|
|
std::vector<std::pair<int, int>> edgeList;
|
|
std::unordered_set<int> uniqueVertices; // Keep track of the number of unique vertices
|
|
|
|
public:
|
|
void insertEdge(int from, int to);
|
|
bool isCycle();
|
|
int findSet(std::vector<int>& parent, int i);
|
|
void unionSet(std::vector<int>& parent, int x, int y);
|
|
};
|
|
|
|
void Graph::insertEdge(int from, int to)
|
|
{
|
|
edgeList.push_back(std::make_pair(from, to));
|
|
uniqueVertices.insert(from);
|
|
uniqueVertices.insert(to);
|
|
}
|
|
|
|
bool Graph::isCycle()
|
|
{
|
|
// Initialize parent vector as disjoint sets
|
|
std::vector<int> parent(uniqueVertices.size(), -1);
|
|
|
|
// Iterate through all graph edges
|
|
for (auto i : edgeList)
|
|
{
|
|
// Find the subset of both vertices of an edge
|
|
int x = findSet(parent, i.first);
|
|
int y = findSet(parent, i.second);
|
|
|
|
// If the subsets are the same, then there is a cycle in the graph
|
|
if (x == y)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
unionSet(parent, x, y);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int Graph::findSet(std::vector<int>& parent, int i)
|
|
{
|
|
if (parent[i] == -1)
|
|
{
|
|
return i;
|
|
}
|
|
return findSet(parent, parent[i]);
|
|
}
|
|
|
|
void Graph::unionSet(std::vector<int>& parent, int x, int y)
|
|
{
|
|
parent[x] = y;
|
|
}
|
|
|
|
// Sample test case
|
|
// Time complexity is O(E) where E is the number of edges
|
|
int main()
|
|
{
|
|
Graph graph;
|
|
graph.insertEdge(0, 1);
|
|
graph.insertEdge(0, 2);
|
|
graph.insertEdge(1, 2);
|
|
if (graph.isCycle())
|
|
{
|
|
std::cout << "Graph contains a cycle" << std::endl;
|
|
}
|
|
else{
|
|
std::cout << "Graph does not contain a cycle" << std::endl;
|
|
}
|
|
return 0;
|
|
}
|