Notepad/enter/Machine Tips (Quantum)/Project Vault/Quantum Master's Paper/Code Samples/templates/Shor's Factorization.md

270 lines
4.0 KiB
Markdown
Raw Permalink Normal View History

2023-07-05 18:29:11 +00:00
```python
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 27 20:31:40 2021
@author: sollyboukman
"""
import matplotlib.pyplot as plt
import numpy as np
from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.visualization import plot_histogram
from math import gcd
from numpy.random import randint
import pandas as pd
from fractions import Fraction
from math import gcd # greatest common divisor
def c_amod15(a, power):
"""Controlled multiplication by a mod 15"""
if a not in [2,7,8,11,13]:
raise ValueError("'a' must be 2,7,8,11 or 13")
U = QuantumCircuit(4)
for iteration in range(power):
if a in [2,13]:
U.swap(0,1)
U.swap(1,2)
U.swap(2,3)
if a in [7,8]:
U.swap(2,3)
U.swap(1,2)
U.swap(0,1)
if a == 11:
U.swap(1,3)
U.swap(0,2)
if a in [7,11,13]:
for q in range(4):
U.x(q)
U = U.to_gate()
U.name = "%i^%i mod 15" % (a, power)
c_U = U.control()
return c_U
n_count = 8 # number of counting qubits
a = 7
def qft_dagger(n):
"""n-qubit QFTdagger the first n qubits in circ"""
qc = QuantumCircuit(n)
# Don't forget the Swaps!
for qubit in range(n//2):
qc.swap(qubit, n-qubit-1)
for j in range(n):
for m in range(j):
qc.cp(-np.pi/float(2**(j-m)), m, j)
qc.h(j)
qc.name = "QFT†"
return qc
# Create QuantumCircuit with n_count counting qubits
# plus 4 qubits for U to act on
qc = QuantumCircuit(n_count + 4, n_count)
# Initialize counting qubits
# in state |+>
for q in range(n_count):
qc.h(q)
# And auxiliary register in state |1>
qc.x(3+n_count)
# Do controlled-U operations
for q in range(n_count):
qc.append(c_amod15(a, 2**q),
[q] + [i+n_count for i in range(4)])
# Do inverse-QFT
qc.append(qft_dagger(n_count), range(n_count))
# Measure circuit
qc.measure(range(n_count), range(n_count))
qc.draw(fold=-1) # -1 means 'do not fold'
aer_sim = Aer.get_backend('aer_simulator')
t_qc = transpile(qc, aer_sim)
qobj = assemble(t_qc)
results = aer_sim.run(qobj).result()
counts = results.get_counts()
plot_histogram(counts)
def a2jmodN(a, j, N):
"""Compute a^{2^j} (mod N) by repeated squaring"""
for i in range(j):
a = np.mod(a**2, N)
return a
N = 15
np.random.seed(1) # This is to make sure we get reproduceable results
a = randint(2, 15)
print(a)
gcd(a, N)
def qpe_amod15(a):
n_count = 8
qc = QuantumCircuit(4+n_count, n_count)
for q in range(n_count):
qc.h(q) # Initialize counting qubits in state |+>
qc.x(3+n_count) # And auxiliary register in state |1>
for q in range(n_count): # Do controlled-U operations
qc.append(c_amod15(a, 2**q),
[q] + [i+n_count for i in range(4)])
qc.append(qft_dagger(n_count), range(n_count)) # Do inverse-QFT
qc.measure(range(n_count), range(n_count))
# Simulate Results
aer_sim = Aer.get_backend('aer_simulator')
# Setting memory=True below allows us to see a list of each sequential reading
t_qc = transpile(qc, aer_sim)
obj = assemble(t_qc, shots=1)
result = aer_sim.run(qobj, memory=True).result()
readings = result.get_memory()
print("Register Reading: " + readings[0])
phase = int(readings[0],2)/(2**n_count)
print("Corresponding Phase: %f" % phase)
return phase
phase = qpe_amod15(a) # Phase = s/r
Fraction(phase).limit_denominator(15) # Denominator should (hopefully!) tell us r
frac = Fraction(phase).limit_denominator(15)
s, r = frac.numerator, frac.denominator
print(r)
guesses = [gcd(a**(r//2)-1, N), gcd(a**(r//2)+1, N)]
print(guesses)
a = 7
factor_found = False
attempt = 0
while not factor_found:
attempt += 1
print("\nAttempt %i:" % attempt)
phase = qpe_amod15(a) # Phase = s/r
frac = Fraction(phase).limit_denominator(N) # Denominator should (hopefully!) tell us r
r = frac.denominator
print("Result: r = %i" % r)
if phase != 0:
# Guesses for factors are gcd(x^{r/2} ±1 , 15)
guesses = [gcd(a**(r//2)-1, N), gcd(a**(r//2)+1, N)]
print("Guessed Factors: %i and %i" % (guesses[0], guesses[1]))
for guess in guesses:
if guess not in [1,N] and (N % guess) == 0: # Check to see if guess is a factor
print("*** Non-trivial factor found: %i ***" % guess)
factor_found = True
```