Notepad/enter/Coding Tips (Classical)/Terminal Tips/Languages/Python/tools/Libraries/Tornado.md

114 lines
4.7 KiB
Markdown
Raw Normal View History

2023-07-05 18:29:11 +00:00
# Tornado
[Tornado](http://www.tornadoweb.org/) is a Python web framework and asynchronous networking library, originally developed at [FriendFeed](https://en.wikipedia.org/wiki/FriendFeed). By using non-blocking network I/O, Tornado can scale to tens of thousands of open connections, making it ideal for [long polling](http://en.wikipedia.org/wiki/Push_technology#Long_polling), [WebSockets](http://en.wikipedia.org/wiki/WebSocket), and other applications that require a long-lived connection to each user.
Tornado can be roughly divided into three major components:
- A web framework (including [`RequestHandler`](https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler "tornado.web.RequestHandler") which is subclassed to create web applications, and various supporting classes).
- Client- and server-side implementions of HTTP ([`HTTPServer`](https://www.tornadoweb.org/en/stable/httpserver.html#tornado.httpserver.HTTPServer "tornado.httpserver.HTTPServer") and [`AsyncHTTPClient`](https://www.tornadoweb.org/en/stable/httpclient.html#tornado.httpclient.AsyncHTTPClient "tornado.httpclient.AsyncHTTPClient")).
- An asynchronous networking library including the classes [`IOLoop`](https://www.tornadoweb.org/en/stable/ioloop.html#tornado.ioloop.IOLoop "tornado.ioloop.IOLoop") and [`IOStream`](https://www.tornadoweb.org/en/stable/iostream.html#tornado.iostream.IOStream "tornado.iostream.IOStream"), which serve as the building blocks for the HTTP components and can also be used to implement other protocols.
The Tornado web framework and HTTP server together offer a full-stack alternative to [WSGI](http://www.python.org/dev/peps/pep-3333/). While it is possible to use the Tornado HTTP server as a container for other WSGI frameworks ([`WSGIContainer`](https://www.tornadoweb.org/en/stable/wsgi.html#tornado.wsgi.WSGIContainer "tornado.wsgi.WSGIContainer")), this combination has limitations and to take full advantage of Tornado you will need to use Tornados web framework and HTTP server together.
----
Example of concurrent web spider with ```tornado.queues```
```
#!/usr/bin/env python3
import asyncio
import time
from datetime import timedelta
from html.parser import HTMLParser
from urllib.parse import urljoin, urldefrag
from tornado import gen, httpclient, queues
base_url = "http://www.tornadoweb.org/en/stable/"
concurrency = 10
async def get_links_from_url(url):
"""Download the page at `url` and parse it for links.
Returned links have had the fragment after `#` removed, and have been made
absolute so, e.g. the URL 'gen.html#tornado.gen.coroutine' becomes
'http://www.tornadoweb.org/en/stable/gen.html'.
"""
response = await httpclient.AsyncHTTPClient().fetch(url)
print("fetched %s" % url)
html = response.body.decode(errors="ignore")
return [urljoin(url, remove_fragment(new_url)) for new_url in get_links(html)]
def remove_fragment(url):
pure_url, frag = urldefrag(url)
return pure_url
def get_links(html):
class URLSeeker(HTMLParser):
def __init__(self):
HTMLParser.__init__(self)
self.urls = []
def handle_starttag(self, tag, attrs):
href = dict(attrs).get("href")
if href and tag == "a":
self.urls.append(href)
url_seeker = URLSeeker()
url_seeker.feed(html)
return url_seeker.urls
async def main():
q = queues.Queue()
start = time.time()
fetching, fetched, dead = set(), set(), set()
async def fetch_url(current_url):
if current_url in fetching:
return
print("fetching %s" % current_url)
fetching.add(current_url)
urls = await get_links_from_url(current_url)
fetched.add(current_url)
for new_url in urls:
# Only follow links beneath the base URL
if new_url.startswith(base_url):
await q.put(new_url)
async def worker():
async for url in q:
if url is None:
return
try:
await fetch_url(url)
except Exception as e:
print("Exception: %s %s" % (e, url))
dead.add(url)
finally:
q.task_done()
await q.put(base_url)
# Start workers, then wait for the work queue to be empty.
workers = gen.multi([worker() for _ in range(concurrency)])
await q.join(timeout=timedelta(seconds=300))
assert fetching == (fetched | dead)
print("Done in %d seconds, fetched %s URLs." % (time.time() - start, len(fetched)))
print("Unable to fetch %s URLS." % len(dead))
# Signal all the workers to exit.
for _ in range(concurrency):
await q.put(None)
await workers
if __name__ == "__main__":
asyncio.run(main())
```