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Abstract

There are different computational algorithms for solving the Rubik’s
cube, such as Thistlewaite’s algorithm, Kociemba’s algorithm and IDA*
search algorithm. This thesis evaluates the efficiency of two algorithms by
analyzing time, performance and how many moves are required to solve the
Rubik’s cube. The results show that the Thistlewaite’s algorithm is less
efficient than the IDA* algorithm based on time and performance. The
paper attempts to answer which algorithm are more efficient for solving
the Rubik’s cube.It is important to mention that this report could not prove
which algorithm is most efficient while solving the whole cube due to limited
data, literature studies and authors are used as an argument to prove that
the Korf’s algorithm is more efficient.



Abstract

Det finns ett antal olika algoritmer för att lösa Rubik’s kuben , s̊asom
Thistlewaite algoritm , Kociemba algoritm och IDA* algoritm. Denna rap-
port utforskar effektiviteten av tv̊a optimala algoritmer genom att analysera
tid , prestanda och hur m̊anga operationer som krävs för att lösa Rubik’s
kuben. Resultaten visar att Thistlewaites algoritm är mindre effektiv än
IDA * algoritmen baserad p̊a tid och prestanda. Denna rapport försöker
besvara p̊a fr̊agan: vilken algoritm är mer anpassad för att lösa kuben. Det
är viktigt att nämna att rapporten inte kunde bevisa vilken algoritm är
mest effektiv för att lösa hela kuben, och därför användes literaturstudier
och olika författare för att bevisa att Korf’s algoritm är mer effektiv.
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Figure 1: Middle layer [35]

Figure 2: Pink shadows rep-
resenting a tetrad [36]

0.0.1 Terminology

1. Facelet/Cubie: The Rubik’s cube is made
of twenty subcubes or cubies that is attached
to the cent

2. Middle layer Consists of one stage, and
is the layer between L and R.

3. Parity of edges and corners The overall
parity must be even according to the laws
of the cube.

4. Layer: Contains one side of the cube.

5. Tetrad: is made up of four corners in an
orbit.

6. Cost bound: cost of the current iteration.

7. Permutations: Ordering of the faces of
the Rubik’s cube.
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Chapter 1

Introduction

The Rubik’s cube is a 3-D combination puzzle invented in 1974 by Erno Ru-
bik, a Hungarian professor. The motivation for developing the cube was that
he wanted to create a model that explains the three dimensional geometry
to his students. The Rubik’s cube was conceived as a teaching tool, where
Erno Rubik could demonstrate the structural design to his students. Also
known as the “Magic Cube”, the Rubik’s cube has become a hit worldwide
for nearly a generation. Individuals of all ages have spent hours, weeks or
months trying to solve the cube. As a result, over 350 million Rubik’s cubes
have been sold worldwide, making it the world’s most famous, bestselling
and well-known puzzle to have a rich underlying logical, mathematical struc-
ture[1].

The standard version is a 3-D combination puzzle with six faces covered
by nine stickers, each of the faces have one of six colors; white, red, blue,
orange, green and yellow. The puzzle is scrambled by making a number of
random moves, where any cube can be twisted 90,180 or 270 degrees. The
task is to restore the cube to its goal state, where all the squares on each side
of the cube are of the same color(fig b) To solve a scrambled Rubik’s(fig a)
cube, one needs an algorithm, which is a sequence of moves in order to come
closer to a solution of the puzzle. Such sequences usually require more than
fifty to hundred moves for a regular human being. However, it is believed
that any cube can be solved in less than twenty moves.[4]

There are several computational approaches for solving the Rubik’s cube.

(a) Scrambled
cube

(b) Solved
cube
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However, the standard approaches for solving the Rubik’s cube in this re-
search are Thistlethwaite’s algorithm and the IDA* algorithm.

1.1 Problem Definition

The most basic way a computer can represent a Rubik’s cube is to use
graph theoretical concepts, where the Rubik’s cube can be represented as
a graph. Algorithms such as depth first search and breath first search can
be implemented to find a sequence of edges(cube twists) to solve the cube,
by reaching into a desirable configuration. This is referred to as a brute
force search. The name brute force search is commonly used in computer
graph theory and is a technique that has been extensively applied for finding
solutions to problems in for example Artificial intelligence. [9]

The problem with brute force search is performance. Algorithms such
as depth first search or breadth first search are impractical on large prob-
lems.[17] The brute force search is only feasible for small problem instances
and has some serious limitations, which are overcome by Thistewaite’s al-
gorithm and the IDA* algorithm. Therefore, this thesis will analyze the
Thistlethwaite’s algorithm instead of the depth first search(as chosen be-
fore). [24]

1.1.1 Artificial intelligence

Over the decades, the Artificial intelligence research community has made
various contributions to mankind’s knowledge. Finding a solution to a con-
straint search problem is thought to be a proof of intelligence and therefore,
one might think that if a machine can solve the cube, it can be assumed to
be intelligent. Questions such as, is it possible to accomplish a human like
behavior in computers?, still serves as an unsolved mystery.

The use of games and puzzles in Artificial research dates back to its earli-
est days in 1950, where the idea of creating the illusion of human intelligence
in a computer has been illustrated throughout the history of computer sci-
ence. However, finding optimal solutions for the Rubik’s cube still serves as
a challenging problem today. [5] For researches all around the world, the
following problems are challenges for AI research:

• The Rubik’s cube contains about 4.3252x1019 states, making it im-
possible to store in the memory. This is equal to the number of states
reachable from any given state.

• The minimum number of moves required to solve a Rubik’s cube. [6]

It is not possible for any human being to physically count each permu-
tation, and solving problems such as finding optimal solutions cannot be
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solved only by humans. Therefore, computers act as a utilitarian tool to
solve problems such as Rubik’s cube puzzle, since computers are good at
numeric calculations, memorizing large sets of data and can search quickly.
However, humans are really good at generalizing and using knowledge, some-
thing that computers are primitive in comparison. [5]

1.2 Problem statement

This thesis will explore two popular approaches for solving the Rubik’s cube.
Both methods are based on the idea to solve the Rubik’s cube by using
subproblems. The performance of an algorithm is measured by comparing
the time and space complexity, if the algorithm is optimal etc.

• To compare the time, moves and performance efficiency of the Korf’s
algorithm(IDA*) and Thistlewaits algorithm.

1.3 Motivation

Variations of possible cube configurations have inspired many computer sci-
entists as well as mathematicians to study the Rubik’s cube, since the cube
contains 43 quintillion states. Professors and scientists around the world
have often used the Rubik’s cube as a case for studying optimal solutions,
creating new algorithms(step-by-step guide to solve a Rubik’s cube) or per-
mutations(ordering of the faces of the cube).

The reason for choosing the Rubik’s cube as a platform is because it
has a significant importance in the computer research field. It serves as
an example of what the complex counting equations can be used for while
studying the permutations. The Rubik’ cube has also been a useful tool to
test for the Artificial Intelligence to learn, develop new generic algorithms,
and improve existing ones that can be applied to several other problems as
well. [2]

1.4 Purpose

The first goal of this project is to investigate different approaches for solving
the Rubik’s cube to find out which uses the least amount of time, memory,
and moves. The second goal of this project is to motivate other programmers
to seek out, try to and analyze different search algorithms for solving the
Rubik’s cube.
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Chapter 2

Background

This background consists of five different parts. The first part covers the
Rubik’s cube, followed by graph theory and popular approaches for solving
the Rubik’s cube, and thereafter an introduction of heuristic search. In the
last section the complexity of the IDA* algorithm is covered.

2.1 The Rubik’s cube

2.1.1 Rubik’s mechanics

Figure 2.1: A Rubik’s Cube

The standard version 3x3x3 consists
of two distinct components: the
core and the outer cubes. The core
can be represented as a central cube
with six attached octagonal, where
each octagon is allowed to rotate in
a 90, 180 or 270 degree in either di-
rection. The outer cube is attached
to the core and consists of three
types: the slides, the edges and the
corners. There are in total six side
pieces; each side piece is attached to
one of the octagons of the core and
these pieces cannot be moved. Ru-
bik’s cube has twelve edge pieces and eight corners. Each edge piece has two
visible faces and each corner piece has three visible faces. Any given edge
piece or corner piece can be rotated in any edge position, however some per-
mutation sets are not feasible. One side piece, four corners and four edges
make up one face of a Rubik’s cube, where each face is labeled with a solid
color. Finally, these twenty six pieces form a Rubik’s cube(fifty four colored
stickers) that are able to rotate through all three dimensions. The aim is to
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(a) Center pieces (b) Corner pieces (c) Edges pieces

restore the cube to its goal state, where all the faces on each side of the cube
are of the same color. Every solver of the Cube uses an algorithm, which is
a sequence of moves in order to come closer to a solution of the puzzle.[2]

There are 8! permutations of the eight corners, each of which can be
arranged in three orientations. This means that there are 38 possibilities
for each permutation of the corner pieces. There are 12! permutations of
the twelve edges ,where each piece has two possible orientation. [3] So each
permutation of the edge pieces has ?212 arrangements, and altogether total
number of states is 8!x38x12!x212. However, these permutations are split
into twelve classes that makes it possible to only transform between states
in the same class. So altogether there are 8! ∗ 38 ∗ 12! ∗ 212(4, 3x1019) states
reachable from one state. [4]

2.1.2 Definitions

Figure 2.2: Notation [3]

To refer to the Rubik’s cube, one
could use the notation by David
Singmaster to name the six faces
of the Rubik’s cube as following
right(R), left (L), up(U), down (D),
front(F) and back(B). Each face can
be rotated in two different direc-
tions; the first one is the 90-degree
clockwise and the second one is the
counter-clockwise turn, which is the
opposite direction. [3]

2.1.3 Orientation

An edge cubie can have a good or a
bad orientation. An edge is considered to be a good orientation if the piece
can be brought back to its original position in the right orientation, without
twisting the UP or Down faces of the Rubik’s cube. The Up and Down
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(a) Fig 2:3 Corner orientation resulting in three orientation: 0(corrected
oriented), 1(clockwise) and 2(counterclockwise).

[10]

turns of the Rubik’s cube will flip the edge orientation of the Upper or Down
cubies, where the L or R turn will preserve the corner orientation of the Left
and Right pieces. Since edges only have two possible orientations, it can be
represented as a 1(good orientation) or 0(bad orientation) respectively.

For the corner cubies of the Rubik’s cube, things are more complicated
since there are three possible orientations. If a corner cubie is corrected ori-
ented,this will be denoted by 0 and when a corner cubie is twisted clockwise
or counterclockwise, the orientation will be denoted by 1 or 2 respectively.
Note that there are also another way to measure the orientation of each
cubie. If a corner cubie have a L or R facelet that belongs to either the
L or R face, this can be denoted by 0. Otherwise, the orientation will be
determined as figure. (Fig2.3)

Furthermore, this definition will be more apparent when the Thistleth-
waite’s algorithm is explained in further sections. [10]

2.2 Graph theory to solve the Rubik’s cube

Graph theory is widely explored, implemented and used to study various
applications in the field of Computer Science. Graph theoretical concepts are
able to effectively represent and solve complex problems such as the Rubik’s
cube. The major role of this theory in computer science is the development
of graph algorithms, that can be used to solve several problems that are
represented in the form of graphs. A Rubik’s cube can be represented as
a graph; where the vertices are a set of all possible configurations and the
edges represents the connection between configurations, that are one twist
away from each other. It is known to find the shortest path between two
or more vertices in the graph.Lastly, this theory is also effectively to use in
problems such as finding solutions for solving the Rubik’s Cube. [9]

Breadth first search and depth first search are very easy to program
either iteratively or recursively, and can be applied to find a sequence of
edges (cube twists) that will solve the cube, by reaching into a desirable
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configuration.[13]

2.2.1 Depth first search algorithm

Depth first search is an algorithm for searching the tree or graph data struc-
tures. It is a technique that has been widely applied for finding solutions to
problems in Artificial Intelligence. [10] This method has also been widely
acknowledged as a powerful technique for solving various graph problems as
well as for treading mazes, but whose properties have not yet been widely
analyzed.[11] Assume one is given a graph. Starting from one vertex of G,
the algorithm traverses along the edges, from vertex to vertex until some
depth cutoff is reached. When it reaches as far as possible(run of edges),
then it backtracks to the next most recently expanded node and begins a
new exploration from this point. Lastly, the algorithm will traverse along
all the edges of G, each exactly one time.

The only path that will be stored in order to execute the algorithm will
be the path between the initial node and the current node. Since, the depth
first search algorithm only stores the path between the initial node and the
current path, it is bound to search all the paths in the graph to the cutoff
depth. In order to examine the time complexity of this algorithm, one needs
to define a new parameter e that stands for edge branching factor. The time
complexity is O(bd). Note that this factor stands for the average number of
different operators applicable to a given state. [12] The space complexity
of this algorithm is O(bm), where b stands for the branching factor and m
stands for the maximum depth of the tree. [14]

2.2.2 Benefits and limitations of the depth first search

A depth first search is an algorithm that has minimal space requirements and
is space efficient. One can implement the depth first search algorithm with
a last-in first-out stack or implement as a recursive implementation. The
memory requirements of this algorithm are linear in the uttermost depth of
the search, since the algorithm only needs to store those states currently in
the search stack. Another advantage of this algorithm is that if it founds a
solution without exploring the whole tree, then the time and space it takes
will be lower. However, a depth first search algorithm has several drawbacks.
[16]

Given a configuration of the cube, there are a finite number of move-
ments. If one wants to find the solution to a Rubik’s cube, one needs to
consider that the entire state space for this problem is enormous, which
may cause the algorithm to choose an edge leading to a subgraph that does
not contain a solution state and is enormous to expand fully. This results
in a solution that will never be returned by this algorithm, since the code
might rotate the same plane alternatingly back and forth making it impos-
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sible for the program to make any further progresses. [24] To overcome the
blindness of the depth first search algorithm, the constraints of pruning, lim-
ited depth search are added. [14]. Move pruning is an example of pruning
that uses a low - overhead technique for reducing the size of a depth first
search tree, making it possible to find solutions as well as performing better.
[15] By limiting how many edges/depths the algorithm will search until it
backtracks, it will always give a solution if there is one to be found at the
given depth. This is known as depth limited search.

Some other major disadvantage of depth first approaches is that in a
graph with multiple paths to the same state, any depth first search may
generate far more nodes than there are states, since it cannot detect dupli-
cate nodes. [17] As a result, the entire number of generating nodes may be
greater than the number of nodes generated by other algorithms.[16]

2.2.3 Breadth first search

Breadth-first search is an algorithm for traversing and searching a tree or a
graph. It starts at the tree root and explores the neighbour nodes first, and
then moves to the next state until a goal state is reached. The idea behind
this algorithm is to search one level of the search tree at a time, by using
a queue (First in first out). The first solution path found by breadth-first
search will be the shortest path, since it always explores and expands all the
nodes at a given depth before expanding any nodes at a greater depth.

The time complexity of this algorithm is proportional to the number
of nodes generated as the depth first search algorithm,O(bd). The space
complexity is alsoO(bd). [14]

2.2.4 Limitations and benefits of using the breadth first search
algorithm

An advantage of using the breadth first search over the depth first search
algorithm is that it always finds the shortest path to a goal. Although
this algorithm does not have the subtle properties of the depth first search
(minimum requirements etc), it still provides advantages such as[17]:

• A BFS is a complete search.

• One can avoid infinite loops, if they check for repeated states in their
algorithm, this algorithm will never get trapped.

• The tree has no loops.

• If there exist a solution, the BFS algorithm will always find it.

• It will always find the shortest solution even though there is more than
one solution.[14]
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The major disadvantage of this algorithm is the memory that requires
to store all the nodes, compared to the depth first search algorithm that has
minimal space requirements. This results in exponential space complexity,
which may exhaust the available memory on the computer in a matter of
minutes. Therefore this algorithm is impractical on large problems.[17]

2.3 Popular approaches

There are several computational approaches for solving the Rubik’s cube,
such as Thistlethwaite, Kociemba’s algorithm and IDA* algorithm. These
advanced algorithms are the most commonly used in computer science for
solving the Rubik’s cube. These are based on group theory concepts and
advanced concept such as traversal.[8]

2.3.1 Thitslewaite’s algorithm

Thistlethwaite’s algorithm was invented in 1981 by Morwen Thistletwaite, a
British professor of mathematics. This algorithm is based on a mathemat-
ical theory, called group theory and on extensive computer searches, which
studies the algebraic structures known as groups. The concept of a group
is central to algebra theory and is a powerful formal method for analyzing
abstract and physical systems, and has a high importance in solving the
Rubik’s cube related to mathematics problems. [10]

Definition ” A group G consists of a set of objects and a binary operator,
*, on those objects satisfying the following four conditions

• The operation * is closed, so for any group elements h and g in G, h
∗ g is also in G.

• The operation * is associative, so for any elements f, g, and h, (f ∗ g)
∗ h = f ∗ (g ∗ h).

• There is an identity element e ∈ G such that e ∗ g = g ∗ e = g.

• Every element in G has an inverse g −1 relative to the operation *
such that g ∗ g −1 = g −1 ∗ g = e. ” [8].

In general, the Thistlethwaite’s algorithms divides the problem into four
independent subproblems by using the following four nested groups Gi:

The functional principle of this algorithm is to start with a cube in Gi,
and then move some target cubies to their expected positions by using only
moves from nested groups Gi. And repeat this until the Rubik’s cube is
entirely solved, meaning that it arrives in G4. In general, every stage of the

12



(a) Nested Group Gi

Thislewaits algorithm is based on a table that shows a transition sequence
for each element in the current coset space Gi+1 Gi to the next one I = I+1.

Definition ”Given a Group G and a subgroup H < G , a coset of H is
the set of Hg = hg : h ∈ H ; thus, H < G partitions G into cosets. The set
of all cosets is written h〉G.”[8]

The coset spaces describe the reduced form of the Rubik’s cube, which
directly results in the following; the total number of reachable states is
reduced by using moves from some subgroups. In other words, this means
that the number of permitted moves decreases each time the program moves
to a new group/stage. Further explanation is described down below where
exact orders for each group are calculated. [8]

Getting from group G0 into group G1

GO represents all the states in the Rubik’s cube. This is the number of
states reachable from any given state.

Group Positions
GO 4.33 ∗ 1019

In the first stage, all the edge-orientations are fixed. By definition(section
2.1.3), an edge is correctly oriented if the piece can be brought back to its
original position without making use of U and D turns. The edges in the
Up or Down-face will flip the edge orientation on every Up and Down turns.

Getting from group G1 into group G2

The first coset space G1 6 G0 contains all the cube states. In this state, all
edge-orientations are fixed.This stage has a factor of 211 that corresponds
to the fact that the edges are fixed in this stage. [10]

Group Positions Factor
G1 2.11 ∗ 1016 211 = 2048
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What has been achieved in the previous stage is the correct orientation
of edge pieces. This results that quarter turns of both F and B are now
prohibited. The process of transferring the cube from G1 to G2 can be
divided in two parts. The first part is to put the middle edges in the middle
layer. Second, the corners are correctly oriented.

Getting from group G2 into group G3

In the second coset space G2 6 G1 , all the edges are fixed.The 90 degrees
turns of UP and Down faces are prohibited in this stage. The second stage
has a factor that corresponds to the fact that all the corners are correctly
oriented and puts the middle edges in the middle layer.

Group Positions Factor
G2 1.95 ∗ 1010 1, 082, 565

In this stage, the corners are fixed into their natural orbits and quarter
turns of both F and B faces are not allowed anymore. This makes sure that
the corner orientation and the middle edges remain fixed.[7] The third stage
puts the corner into their G3- orbits and places all the edge pieces in their
correct position, and also fixes the permutation of the corner and edges. G3
- orbits means that the set of positions that are reached by the corner cubies
by only using moves from G3.

Getting form group G3 into group G4

In the third coset space G36 G2, using moves from G3 can solve the cube.

Group Positions Factor
G3 6.63 ∗ 105 29400

In the final stage, the cube can be solved by using only double moves.
This makes sure that the edges and the corners stays in their slices. In
this stage, the remaining edges and corners will be restored to the correct
position, until the cube is entirely solved.

Final stage

The final stage G4 represents the solved state. This means that there are
possible states in group G3 that needs to be fixed, until it can transfer to
the solved state. In other words, this means that the permutations of each
edge slice and edge corner are solved in this stage.

Group Positions
G4 1
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Finally, the Thitslewaites algorithm is relatively easy to implement. This
algorithm has been used worldwide, especially in Tomas Rokicki’s cube pro-
gramming contest. The main task of this contest is to write a short program
that solves the Rubik’s cube. By using the Thitslewaites algorithm combined
with computer searches, the program can quickly give very short solutions.
However, these solutions might not be optimal and may require more moves
than other efficient algorithms, such as the kociemba’s algorithm. [10]

2.3.2 Kociemba’s algorithm

Kociemba’s algorithm is an improved version of the Thistlethwaite’s algo-
rithm that works by dividing the problem into only two subproblems. This
method applies an advanced implementation of IDA* search to be able to
calculate, remove symmetries from the search tree, and solve the cube close
to the shortest number of possibilities.[8]

Applying these solutions combined with computer searches might not
always give optimal or minimal solutions. In 1997, Richard Korf developed
an algorithm which he had optimally solved a random cube. [4]

2.4 Heuristic search

In Artificial intelligence heuristics searches have a major part in the search
strategies, since it helps to reduce the number of alternatives from an ex-
ponential of a polynomial number. Most of the previous works have been
focused on algorithms such as A*, which is a famous Artificial intelligence
search technique. This algorithm uses heuristic knowledge to find the short-
est path for search problems. However, there are several limitations of this
algorithm. [18]

The main disadvantage of this algorithm is that it assumes that there
is only one path from the start to the goal state, even though problem
spaces may contain multiple paths to each state. The second disadvantage
of applying this algorithm is that in order to determine the accuracy of the
heuristic search, one needs to determine the cost of the optimal solution for
that state. This may require large memory use. In order to solve larger
problems that require larger memory usage, one needs to use an admissible
search. [19]

2.4.1 IDA* algorithm

The Korf’s algorithm was invented by Richard Korf in 1997 and is a graph
path search algorithm that finds the optimal solution for solving the Rubik’s
cube. Richard Korf described the method in his paper as following: “IDA*
is a depth first search algorithm, that looks for increasingly longer solutions
in a series of iterations, using a lower-bound heuristic to prune branches
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once a lower bound on their length exceeds the current iterations bound” .
[4] It is a variant of depth first iterative deepening (DFID), which uses depth
first searches to find the destination. A normal depth first search ends when
it has traversed along all nodes, and there are no more nodes left to expand.
But a depth first iterative deepening algorithm stops when a depth limit has
been reached, and terminates when the goal is encountered.

This algorithm improves upon depth first iterative deepening search al-
gorithm, by using a heuristic search h(n). It finds the shortest path between
a start node and a goal node by using a heuristic function f(n) = g(n)+H(n)
applied to each node n of the search space, where g(n) stands for the cost
of reaching node n from the initial state, and h(n) stands for the cost of
reaching a goal from node n.

This function will stop searching along the current path, when its total
cost g(n) + h(n) > cutoff . Initially, the value of the cutoff is the heuristic
estimate of the cost between a start state to a goal state. Note that the
path between the start state to a current state needs to be a part of a depth
first search in order to reach the goal state etc. [20]

If the heuristic function is admissible, in other words, if h(n) never over-
estimates the actual cost from node n to a goal, then the IDA* search algo-
rithm guarantees to find an optimal solution for solving the Rubik’s cube.
[21]

2.4.2 Manhattan distance

Korf used a variant of Manhattan distance as a heuristic function, where
distance is equal to the minimum number of moves to correct position and
orientation. For each cube compute the minimum number of moves required
to correct position and then sum, these values over all copies, and divide it
by eight. Since the algorithm has to be admissible, one needs to divide the
sum by eight since every twist moves four corner and four edge cubes.

However, the basic Manhattan distance gives a low value, and therefore
the search may be excessively computation intensive if the basic Manhattan
distance is utilized directly. Therefore, a modified admissible heuristic search
is used. [4]

The modified heuristic search can be evaluated as following;

The hcorners(n) calculates the minimum number of moves to fix all the
corners in the correct position. he1(n) calculates the minimum number of
moves to fix half of the edge cubes, and he2(n) fixes the rest of the edges.
[4]
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2.4.3 An example of IDA* search

Figure 2.3: An example of IDA*
search [31]

Nodes A to M is marked with its f-
value, and Nodes A and K are a set
of the start and goal nodes respec-
tively. In this figure, only the gener-
ated nodes are shown on the picture,
whose f-vales are less or equal to the
f-value of node K. In the first iter-
ation, the cost bound(cutoff) is the
f-value of the start node A, which is
1. In this iteration, nodes A and C
are selected for expansion.

In the next iteration, the cost
bound(cutoff) is set to be the small-
est f-cost of any node that exceeded
the cost bound of the initial iter-
ation. Therefore, cost bound is
equivalent to two. In this iteration, nodes B, D, F, G, A, C are selected
for expansion. On the final iteration, the algorithm terminates once a goal
node is reached. In this case, only nodes A, B, D, E, H and K are selected
for expansion. [31]

2.4.4 Benefits and limitations of the IDA* algorithm

To find an optimal solution, one needs to use an admissible search algorithm.
Algorithms such as A* are impractical on large problems, since it checks for
the previously generated states.

IDA* search algorithm uses the depth first algorithm to be able to take
advantage of the low space requirements, since the depth first search is linear
with tree depth instead of the number of vertices. The algorithm reduces
its memory requirements by performing depth first searches bounded by an
f-cost value, which limits the length of the expanded path.

The combination of large savings, good performance and automated
analysis makes the IDA* search algorithm a useful tool for solving the Ru-
bik’s cube, since it is based on iterative deepening that uses less memory
than A* algorithm. [22]

Though IDA* has several advantages and is a useful tool for solving the
Rubik’s cube it also has drawbacks. One of the disadvantages is that this
algorithm can generate the same nodes repeatedly like depth first search
algorithm, since it retains no path information between iterations. The
algorithm will only re-expand a path if it is necessary, and therefore this
might be a costly operation, otherwise it won’t. [24] Since it does not keep
any previously explored path, the time complexity of this algorithm is quite
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high. Hence, the drawbacks of this algorithm while solving the Rubik’s cube
can be covered by numerous advantages of this algorithm. [24]

2.5 Complexity

There are 43 quintillion different states that can be reached from any given
configuration according to the Saganesque slogan. Therefore the complexity
of the cube problem is complex and huge. Another important question is
the least number of steps needed to solve a Rubik’s cube. This number is
known as “Gods number”. The god’s number has been shown to be equally
low as twenty moves. Every position of Rubik’s cube can be solved in twenty
six moves in the quarter turn metric or in twenty moves or less in half-turn
metric. [4]

2.5.1 Time and Space complexity of IDA* algorithm

The time complexity of the IDA* algorithm depends on the quality of the
heuristic function, which can determine if the complexity of the algorithm is
exponential or linear. The complexity of the algorithm will be exponential,
if the heuristic returns zero for every state since this algorithm becomes a
brute force search. On the other hand, if the heuristic returns the exact cost
to reach a goal, the complexity will be linear.

One needs to consider following that the heuristic search depends on
the branching factor of problem space, solution depth of problem instance
and the heuristic evaluation function. However, the dominant factor in the
running time of IDA* algorithm is the number of node generations that
depend on the cost of an optimal solutions, and the number of nodes in the
heuristic function, or in the brute force tree. [23]

The time complexity of IDA* is analyzed by Richard Korf under the
assumption that the heuristic cost estimate h(n) is consistent. Initially, the
heuristic function h(n) is consistent if it is equal or less than k(n, n′)+h(n′),
where n stands for node n and n’ stands for any neighbor. The value of
k(n,n’) is the cost of the edge from node n to any neighbor n’. For example,
the heuristic function illustrated in the figure 2.6 is inconsistent.

One can also define this as following: a heuristic function h(n) is consis-
tent if it is equal or less than k(n,m) + h(m), where k(n,m) is the value of
the cost of an optimal path from n to m. However, it is difficult to determine
for a real heuristics, since obtaining optimal solutions are extremely difficult
and sometimes impossible.

The running time of IDA* is proportional to number of node expansions,
only if a node can be expanded and its children evaluated in a constant time.
For any consistent function, an admissible search algorithm must continue
to expand all nodes whose total cost, f(n) = g(n) + h(n) is less than the
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Figure 2.4: An inconsistent heuristic function [32]

cost of the optimal solution. Note that f(n) < c is a sufficient condition to
expand node n etc.

The cost of the optimal solution will be equal to c in the final iteration
of the IDA* search algorithm, where the worst case will expand all nodes n
if its total cost f(n) = g(n) + h(n) is less or equal to c. [19]

Lastly, the space complexity of the IDA* algorithm is linear instead
of exponential, since the algorithm is performing a depth first search that
only requires linear space. Furthermore, the space complexity of IDA* is
asymptotically optimal. [7]
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Chapter 3

Method

The following section describes the methods used in this research.The first
part of this chapter describes the choice of language and the algorithms
that will be used for evaluation.The rest of the chapter will describe how to
represent a Rubik’s cube and the testing environment.

3.1 Programming Language

The programming language of choice is Java, which is a widely used object-
oriented, class-based programming language. The main reason for using Java
is because it provides object-oriented features,garbage collection(automatic
memory management) and extensive functionality. [26]

The downside of using Java compared to languages such as C or C++ is
that the performance may be slower and the compiler may take more time
than a good C++ compiler. However, the performance downside is not as
performance critical as for example games, since slow performance can make
a game unplayable. Therefore, using algorithms to find solutions for solving
the cube is more acceptable to have delays, slower speed and performance
than games. Despite knowing this, the main reason for using Java is because
the language is simple to use and handles memory allocation, and has other
benefits.[27]
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3.2 The Thistletwaite’s algorithm

The Thistlewaite’s algorithm has four phases as mentioned in the back-
ground section. This is illustrated in Figure 3.1.

1. The edges are correctly oriented. This is easy and can be done by
considering if an edge piece is bad or good. In this phase, move edge
pieces of Up or Down face by avoiding quarter turns of Up or Down,
and then cure them by performing these quarter turns. For further
explanation, please read section 2.1.3.

2. This phase can be divided into two parts. First, put the middle edges
in the middle layer. Second, orientation of the corners are correctly
oriented. The first part is easy and can be done in the same way as
the previous phase. For example, the edge pieces FU, FD, BU, BD
are brought into their slices. Note that each corner piece has a L-facet
or R- facet, and therefore in this stage each of these facets will lie on
either the L or the R face.

3. This is the trickiest stage. The corners are placed in their respectively
tetrads, the edges into their appropriate slices and the parity of the
edge and corner permutation is even. To be able to place the corners
into their orbits, one needs to calculate which coset of form G3aB of
the permutation of corners lies in, where a and b is 1.

4. Solves the cube by fixing both the corner and edge permutation. In
this stage, only 180 turns are used.

The Breadth first search

The search that is used in this algorithm is the breadth first search, which is
shown in figure 3.2. The search algorithm will continue as long as there are
enough moves to reach a solution. To be able to overcome the drawbacks of
the exponential growth that requires for example too much memory, a table
is created for each stage. This table represents how many more moves are
required and how far the program is from completing the sub-problems.
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Figure 3.1: Thistlewaite’s algorithm
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Figure 3.2: Breadth first search
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3.3 The IDA* algorithm design

3.3.1 Pseudocode

Algorithm 1 The IDA* algorithm

1: procedure IDAStar* ()
2: cutoff← f(s) = h(n)
3: while goal node is not found or no new nodes exist do
4: DFS search to explore nodes with f-values within cutoff
5: if goal not found then
6: extend cutoff to next unexpanded value if there exists one

[33]

3.3.2 Flowchart

The IDA* algorithm can be described as following:
1. At each iteration, perform a depth-first search that keeps track of the

cost evaluation f = g + h of each node generated.
2. If a node is generated whose total cost (g + h) exceeds the given

thresholds, its path is cut off.
3.This threshold starts at the cost of the initial state. At each iteration,

the cost threshold increases in each iteration. The threshold that will be used
for the next iteration will be the minimum cost of all values that exceeded
the current threshold.

4.The algorithm terminates when the total cost does not exceed the
current threshold.[28]

The algorithm is illustrated in Figure 3.3.
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Figure 3.3:
The

IDA*
algo-
rithm
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Figure 3.4: Corners

Figure 3.5: The edge set 1 and 2

Figure 3.6: Represents the moves [34]

3.3.3 Heuristic search

1. The Rubik’s cube is only restricted
to the corners. The heuristic search
computes the minimum number of
moves to fix all the corners.

2. The Rubik’s cube is only restricted
to six edges. The heuristic search
computes the minimum number of
moves to fix the first set of edges.

3. Lastly, the heuristic search computes
the minimum number of moves to
fix the rest of the edges.

3.4 Representing the moves

There are three different ways to rep-
resent the moves, which can be fur-
ther divided into two sub moves for
each movement. For this purpose, a
move is considered to be a 90, 180
or 270 degree rotation relative to the
rest of the cube. A rotation for ex-
ample can be represented as follow-
ing;

• A single letter L : Rotate Left face
90 degrees clockwise.

• A Letter followed by atmosphere L’
: Rotate the left face 90 degrees counter
clockwise.

• A letter with the number 2 after L2:
Rotate the left face 180 degrees.

For example LU’D2 can be de-
scribe as following steps:

1. Rotate left face 90 degrees clockwise.

2. Rotate upper face(top face) coun-
terclockwise

3. Rotate the Down(bottom) face
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3.5 The Rubik’s cube

The Rubik’s cube is seen
as a collection of six faces,
which is made of nine square
with different colors. The
colors are seen as integer
values from zero to five, as
listed below:

• 0 : Up face (Top face)

• 5 : Down face(Bottom
face)

• 3 : Back face

• 2 : Left face

• 1 : Right face

• 4 : Front face

The Rubik’s is represented as
following: An array of integers of 54
elements.

• Nr 4 Front face: rubikcube[0]
- rubikcube[8]

• Nr 0 Up face : rubikcube[9] -
rubikcube[17]

• Nr 3 Back face : rubikcube[18]-
rubikcube[26]

• Nr 5 Down face :rubikcube[27]
- rubikscube[35]

• Nr 2 Left face : rubikscube[36]-
rubikscube[44]

• Nr 1 Right face : rubikscube[45]
- rubikscube[53]
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3.6 Testing environment

3.6.1 Hardware

Type Name

Operating system OS X Version 10.9.3

Memory 8 GB 1600 MHz DDR3

Graphics Intel HD Graphics 4000

Storage 750 GB SATA Disk

Java version 7

3.6.2 Software

Operating system of choice is OS X 10.9.3. All tests are executed from the
bash shell Terminal version 2.4(326). The motivation for using this operating
system is because it is an Unix-Based OS with a great user interface.

3.6.3 Measuring Time

Measuring time in Java is easy and may be evaluated in many different
ways; wall clock time or CPU time. The time spent executing the code was
measured in wall clock time by using the Java class Timer. The time was
measured more than once, where the best results were considered as the
average time from all these elements.

The default timer has different precisions depending on the platform.
Since OS X/UNIX is used, the wall clock time may be easily affected by
other processes being run on the same machine. Therefore, to minimize
interference from other programs, one should terminate and shut down as
many external programs as possible while running these tests.[29]

3.6.4 Measuring Performance

There are various ways to measure the performance of an algorithm, where
the following categories matters in this research: completeness, optimal,
time complexity and space complexity. An algorithm that is complete will
always guarantee to find a solution if one. The time complexity of an algo-
rithm quantifies the amount of time it is taken for the algorithm to complete
as an arbitrary number/length of the string. The space complexity of an
algorithm quantifies the amount of space taken by the algorithm in order to
successfully complete the algorithm.

Even though time may be a significant factor, one needs to also consider
that search may operate under certain memory constraints that make conser-
vation of space take priority.Therefore time, completeness, time complexity
and space will also determine which of these algorithm is most efficient while
solving the Rubik’s cube. [30]
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Chapter 4

Results

This section will provide the results from the IDA* algorithm and Thistlet-
waite’s algorithm. These results are displayed separately in a tabular and
graphical form. At last a comparison between both of these algorithms are
presented.

4.1 The IDA* algorithm

Computation of the heuristic function is time consuming. It can take about
twenty to forty minutes to compute the heuristic search on an average lap-
top, since the application uses a large amount of memory. The table needs
to be stored in RAM for the IDA* algorithm.

Table 5.1 gives an overview of the average runtime for each depth based
on a movement, nodes/positions per the depth, the memory requirements
and the cost to travel from node n to a goal.

Table 5.2 represents the total memory requirements and the number of
moves the algorithm requires. Figure 4.1 shows the average runtime(s) for
each depth.

In this research paper, the Korf’s algorithm could not solve the Rubik’
cube entirely. Therefore results from the cubecontest is presented as an
example of how fast the Rubik’s cube can be solved by using the IDA* algo-
rithm. Antony Boucher solved the cube with four successive IDA* searches
in 22 milliseconds per solutions, averaged 29.49 moves. However, according
to the author Richard Korf’s, the Rubik’s cube can be solved in less than
twenty moves. For further explanation, see the background section.
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Table 5.1: Total runtime, Nodes/position, Path cost and Memory used for
each depth

Depth Average time(s) Nodes/Positions Path cost Memory Used(MB)

1 0.001342 18 1.0 1

2 0.001729 243 2.0 2

3 0.002168 3,240 3.0 2

4 0.009177 43,254 4.0 3

5 0.044215 577,698 911,250 5.0 5

6 0.05448 7,706,988 6.0 9

7 0.11577 102,876,480 7.0 35

8 1.417755 1,373,243,544 7.0 39

9 14.261387 18,330,699,168 9.0 55

10 39.73267 244,686,773,808 10.0 149

Table 5.2: Total runtime for depths between 1- 10, memory requirements
and total movements

Depth Total memory used Total movements

1-10 291 MB 10
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Figure 4.1: Total runtime for depth 1 - 10.
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4.2 The thistletwaite’s algorithm

Figure 5.3 shows the total runtime for the Thistlewaite’s algorithm, the
number of moves the algorithm requires and the average time per movement.
Figure 5.4 shows the total movement each subgroup requires while solving
the Rubik’s cube.

Table 5.3: Total runtime for the thistletwaite’s algorithm.

Test Total time taken(s) Moves Time per movement(s)

1 343.56 52.37 6.56

2 363.36 52.52 6.91

3 387.98 52.77 7.35

4 315.66 52.21 6.04

Table 5.4: Total movements for each subgroup

Subgroup Moves

G0 7

G1 13

G2 15

G3 17

4.3 A comparison of the IDA* algorithm and the
Thistletwaite’s algorithm

Figure 4.2 shows the total runtime per movement for both of these algo-
rithms, based on the best time. This figure gives an overview of which
algorithm is faster based on the smallest tree(depth up to 10).
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Figure 4.2: Comparison of both algorithms.
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Chapter 5

Discussion

In this section the analysis of the results, recommendation and discussion
about the limitations and further studies will be presented. The limitations
are discussed based on restrictions on time and data of the IDA* algorithm.

5.1 Comparison

The results for both of the algorithms in figure 4.2 show that the IDA*
algorithm is considerably faster than the thistletwaites algorithm based on
time per movement. Thistlewaite’s algorithm requires more than 52 moves
and if it takes approximately 6.04 seconds per movement, then it will take
315 seconds to solve the Rubik’s cube. However, when it comes to depth
further than 9 then the Thistlewaite’s algorithm seems to be faster, but
one needs to consider that the Korf’s algorithm can solve the Rubik’s cube
in less than twenty moves which makes this algorithm faster anyway. The
IDA* algorithm gives an improvement of over five seconds before depth 9.

Furthermore, this raises the question of how much faster the IDA* algo-
rithm is than the Thistlewaite’s algorithm. In this case, only results were
found by the IDA* algorithm up to depth 10 and using the IDA* algorithm
gives an improvement of over seconds as seen on the table.(Less than the 9th
movement). However,further study with more focus on the IDA* algorithm
is therefore suggested. Under the circumstances,the answer to this question
theoretically could be following; the speed of the algorithm depends on the
function of the accuracy of the heuristic function. In this case, a better
heuristic search will be the maximum of the sum of the corner cubes and
edge cubes divided by four, rather than using the same variant as the Korf
used in his research.

The reason why IDA* is a useful tool is because it is based on the heuris-
tic evaluation function, and is therefore able to find solutions by examining
a much smaller number of nodes than the Thistlewaite’s algorithm would
be. As a consequence, the IDA* runs much faster than the Thistlewaite’s

34



algorithm and requires fewer moves than the thistlewaite’s algorithm.
Additionally, one needs to consider that the thistlewaite’s algorithm in

this research paper used the breadth first search, which is an exponential
time algorithm. Since the IDA* requires only linear space: O(d) if the heuris-
tic returns the exact cost to reach a goal, this makes the IDA* algorithm
optimal in terms of solution cost, time and space over the Thitslewaite’s
algorithm using the breadth first search. The combination of large savings
and good performance makes the IDA* search algorithm a useful tool for
solving the Rubik’s cube, since it is based on iterative deepening that uses
less memory than A* algorithm. However, this algorithm is difficult and
complicated to implement compared to the Thistlewaite’s algorithm. Even
though, the Thistlewaite’s algorithm requires more moves than the IDA*
algorithm and may require more time, the Thistlewaite’s algorithm is easier
to implement. Both algorithms are complete, since they always guarantee
to find a solution if one exists.

5.2 Recommendation

In consideration of the difficulty of the Korf’s algorithm, one could imple-
ment the Thistlewaite’s algorithm with the IDA* algorithm to get a better
result. The Thistlewaite’s algorithm using breadth first search takes more
time to complete the search, due to the weakness of its exponential time
and space usage.Linear space algorithms are often more efficient to use while
solving larger problems.Therefore, the Korf’s algorithm has minimal space
requirements and is space efficient, which makes the Korf’s algorithm more
efficient that the Thistlewaite’s algorithm using the breadth first search.
However, these limitations of the Thistlewaite’s algorithm using breadth
first search can be overcome by using the IDA* algorithm, to be able to take
advantage of the low space requirements of the depth first search. There ex-
ist also algorithms that are more efficient than the Thistlewaite’s algorithm
such as the Kociemba’s algorithm, which solve the cube in approximately
half of the moves. However, the Thistlewaite’s algorithm does not guaran-
tee to find optimal solutions or minimal solutions, as the IDA* algorithm.
This algorithm always guarantees to find optimal solutions if the heuristic
function is admissible.

Another interesting finding from the experiments conducted is how in-
efficient brute force search algorithms are compared to the IDA* star algo-
rithm. A possible explanation for the brute force search such as the depth
first search is that the algorithm is impractical when dealing with larger
problems such as solving the Rubik’s cube, and therefore might not ensure
that any solutions will be found. Therefore computational approaches for
solving the Rubik’s cube, such as the Thistletwaie’s algorithm, Kociemba’s
algorithm or the IDA* search are more appropriate when dealing with larger
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problems.

5.3 Difficulty

The Rubik’s cube search space has a branching factor of 18, and even though
the program can expand 10 million positions per second, it will take ap-
proximately 4.3 ∗ 1012 seconds to reach all possible positions. The current
program is in a position to check all moves at a depth of ten within a reason-
able time.However, regardless of the fact that the IDA* algorithm is capable
of solving larger problems and is very beneficial while solving the Rubik’s
cube, it is difficult to make this work on an average computer due to stack
overflow or out-of-memory errors. One reason might be that there exists an
error in updating the f-limit cutoff or in the use of recursion in the program.
The other reason might be that it does not work on an average computer.
Furthermore, this can be solved by using the Thistlewaite’s with the IDA*
search algorithm.

5.4 Source of error

The time was measured more than once, where the best results is seen as
the average time from all these elements to minimize the error. Even though
the time was measured more than once, the wall clock time may have been
affected by other processes being run on the same machine. Even though
time is an important factor, one needs to also consider that search may
operate under certain memory constraints that make conservation of space
take priority, as mentioned before

5.5 Limitations of the IDA* algorithm

Computation of the heuristic function as seen in the result section is time
consuming. It can take about twenty to forty minutes to compute the heuris-
tic search on an average laptop, since the application uses a large amount
of memory. The IDA* algorithm is very speedy for cubes up to 10 moves as
seen on the table 5.1, which gives a good overview of the average runtime.
Beyond that the heuristic function seems to break down, and may take hours
to solve if the algorithm returns any solution for depths further than 10.

5.6 Further Studies

Future research in this field could investigate which algorithm is more effi-
cient and give more valid results that can prove which algorithm is better.
Currently limited results restrict the quality of the IDA* algorithm.
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Chapter 6

Conclusions

Exponential algorithms such as A*, breadth first search are impractical on
larger problems. These algorithms have some limitations, which are over-
come by an algorithm called IDA* search. The IDA* algorithm is a useful
tool for solving the Rubik’s cube, but is difficult to implement. On the
other hand, the Thitslewaite’s algorithm with breadth first search is easier
to implement than the IDA* algorithm,and works correctly without compli-
cation. Therefore, one needs to consider that both of these algorithms have
advantages and disadvantages.

The results show that the Korf’s algorithm is more efficient while solv-
ing the Rubik’s cube based on the smallest tree. In order to achieve more
accurate and valid result there is necessary to have further studies. Since
the Korf’s algorithm could not solve the Rubik’s cube entirely, the asser-
tion built on the different literature studies, or authors are used as an ar-
gument to prove that the Korf’s algorithm is more efficient theoretically.
Furthermore, tthe Korf’s algorithm is more efficient based on performance
measuring(Completeness, time complexity and space complexity).

Finally, this research paper attempts to answer which algorithm is more
appropriate for solving the Rubik’s cube up to 10th movement. In this case,
the IDA* algorithm is more efficient but more difficult to implement, and
therefore it is recommended to use the Thitslewaite’s algorithm with IDA*
search algorithm.
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