
6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 1/9

Shwetha Jayaraj <sjayaraj@nyit.edu>

An Introduction To Backtracking

1 message

Daily Coding Problem <founders@dailycodingproblem.com> Sun, Jun 26, 2022 at 6:20 PM
To: sjayaraj@nyit.edu

 Daily Coding Problem

Hey there,

Today I'd like to give you some tips on how to solve backtracking
questions. Backtracking is an effective technique for solving
algorithmic problems. In backtracking, we search depth-first for
solutions, backtracking to the last valid path as soon as we hit a dead
end.

Backtracking reduces the search space since we no longer have to
follow down any paths we know are invalid. This is called pruning. We
must be able to test partial solutions: for example, we can't find a
global optimum using backtracking, since we have no idea if the
solution we're currently on can lead to it or not. But we can, for
example, solve Sudoku using backtracking. We can know immediately
if our solution so far is invalid by testing if two of the same number
appear in the same row, column, or square.

https://www.dailycodingproblem.com/
https://www.dailycodingproblem.com/

6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 2/9

Let's go through several examples of problems that can be nicely
solved with backtracking to drill this concept down.

1. The N queens puzzle

The N queens puzzle is the classic backtracking problem. The
question is this:

You have an N by N board. Write a function that returns the number of
possible arrangements of the board where N queens can be placed on
the board without threatening each other, i.e. no two queens share the
same row, column, or diagonal.

Before continuing, you should take some time to try to solve it on your
own!

First off, let's describe the brute force solution to this problem, which
means trying every single combination of N queens in each of N * N

spots. That's n2 choose n, which is painfully slow. We can immediately
improve the runtime of this algorithm by noticing that there's no point
in ever placing two queens on the same row (or column), so we really
only need to have one queen per row. Now, using brute force, we
need to iterate over each row and over each spot on each row. Since

we have N rows and N columns, our runtime will be O(NN). That's still
hella slow, though.

It's helpful to ask ourselves three questions to determine whether we
can apply backtracking to a problem.

Can we construct a partial solution?

Yes, we can tentatively place queens on the board.

Can we verify if the partial solution is invalid?

6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 3/9

Yes, we can check a solution is invalid if two queens threaten each
other. To speed this up, we can assume that all queens already placed
so far do not threaten each other, so we only need to check if the last
queen we added attacks any other queen.

Can we verify if the solution is complete?

Yes, we know a solution is complete if all N queens have been placed.

Now that we are confident that we can use backtracking, let's apply it
to this problem. We'll loop through the first row and try placing a queen
in column 0..N, and then the second, and so on up until N. What
differs here from brute force is that we'll be adding the queens
incrementally instead of all at once.

We'll create an is_valid function that will check the board on
each incremental addition. is_valid will look at the last queen
placed and see if any other queen can threaten it. If so, then we prune
the branch since there's no point pursuing it. Otherwise, we'll
recursively call ourselves with the new incremental solution. We only
stop once we hit the base case: we've placed all queens on the board
already.

We can represent our board as just a 1D array of integers from 1..N,
where the value at the index i that represents the column the queen on
row i is on. Since we're working incrementally, we don't even need to
have the whole board initialized. We can just append and pop as we
go down the stack.

Here's the actual code in Python:

def n_queens(n, board=[]):

 if n == len(board):

6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 4/9

 return 1

 count = 0

 for col in range(n):

 board.append(col)

 if is_valid(board):

 count += n_queens(n, board)

 board.pop()

 return count

def is_valid(board):

 current_queen_row, current_queen_col = len(board) - 1,
board[-1]

 # Check if any queens can attack the last queen.

 for row, col in enumerate(board[:-1]):

 diff = abs(current_queen_col - col)

 if diff == 0 or diff == current_queen_row - row:

 return False

 return True

 Save

Let's try it out.

for i in range(10):

 print(n_queens(i))

1

1

0

0

2

10

4

40

92

352

 Save

6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 5/9

Looks correct, according to OEIS!

2. Flight itinerary problem

The flight itinerary problem is as follows:

Given an unordered list of flights taken by someone, each represented
as (origin, destination) pairs, and a starting airport, compute the
person's itinerary. If no such itinerary exists, return null. All flights must
be used in the itinerary.

For example, given the following list of flights:

HNL ➔ AKL
YUL ➔ ORD
ORD ➔ SFO
SFO ➔ HNL

and starting airport YUL, you should return YUL ➔ ORD ➔ SFO ➔
HNL ➔ AKL. (This also happens to be the actual itinerary for the trip
I'm about to take.)

You should take some time to try to solve it on your own! Notice that a
greedy solution won't work, since it's possible to have a cycle in the
graph.

Let's again describe the brute force solution to this problem, which is
to try every permutation of flights and verify that it's a valid itinerary.
That would be O(n!). Now let's ask ourselves if we can improve this
with backtracking.

Can we construct a partial solution?

https://oeis.org/A000170

6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 6/9

Yes, we can build an (incomplete) itinerary and extend it by adding
more flights to the end.

Can we verify if the partial solution is invalid?

Yes, we can check a solution is invalid if 1) there are no flights leaving
from our last destination and 2) there are still flights remaining that can
be taken. Since we must use all flights, this means we're at a dead
end.

Can we verify if the solution is complete?

Yes, we can check if a solution is complete if our itinerary uses all the
flights.

Let's use this to construct our solution:

def get_itinerary(flights, current_itinerary):

 # If we've used up all the flights, we're done

 if not flights:

 return current_itinerary

 last_stop = current_itinerary[-1]

 for i, (origin, destination) in enumerate(flights):

 # Make a copy of flights without the current one to
mark it as used

 flights_minus_current = flights[:i] + flights[i + 1:]

 current_itinerary.append(destination)

 if origin == last_stop:

 return get_itinerary(flights_minus_current,
current_itinerary)

 current_itinerary.pop()

 return None

 Save

3. Sudoku

6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 7/9

Here's the problem: solve a well-posed sudoku puzzle.

Let's try using backtracking:

Can we construct a partial solution?

Yes, we can fill in some portions of the board.

Can we verify if the partial solution is invalid?

Yes, we can check that the board is valid so far if there are no rows,
columns, or squares that contain the same digit.

Can we verify if the solution is complete?

Yes, the solution is complete when the board has been filled up.

Let's try to solve it using our template. We'll try filling each empty cell
one by one, and backtrack once we hit an invalid state. That'll look
something like this:

EMPTY = 0

def sudoku(board):

 if is_complete(board):

 return board

 r, c = find_first_empty(board)

 # set r, c to a val from 1 to 9

 for i in range(1, 10):

 board[r][c] = i

 if valid_so_far(board):

 result = sudoku(board)

 if is_complete(result):

 return result

 board[r][c] = EMPTY

 return board

6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 8/9

def is_complete(board):

 return all(all(val is not EMPTY for val in row) for row
in board)

def find_first_empty(board):

 for i, row in enumerate(board):

 for j, val in enumerate(row):

 if val == EMPTY:

 return i, j

 return False

def valid_so_far(board):

 if not rows_valid(board):

 return False

 if not cols_valid(board):

 return False

 if not blocks_valid(board):

 return False

 return True

def rows_valid(board):

 for row in board:

 if duplicates(row):

 return False

 return True

def cols_valid(board):

 for j in range(len(board[0])):

 if duplicates([board[i][j] for i in
range(len(board))]):

 return False

 return True

def blocks_valid(board):

 for i in range(0, 9, 3):

 for j in range(0, 9, 3):

 block = []

 for k in range(3):

6/28/22, 6:55 PM New York Institute of Technology Mail - An Introduction To Backtracking

https://mail.google.com/mail/u/0/?ik=12adc55a39&view=pt&search=all&permthid=thread-f%3A1736737557504355777&simpl=msg-f%3A1736737557504355777 9/9

 for l in range(3):

 block.append(board[i + k][j + l])

 if duplicates(block):

 return False

 return True

def duplicates(arr):

 c = {}
 for val in arr:

 if val in c and val is not EMPTY:

 return True

 c[val] = True

 return False

 Save

Best of luck!

Marc

If you liked this guide, feel free to forward it along! As always, shoot us
an email if there's anything we can help with!

Snooze or unsubscribe.

© 2019 Daily Coding Problem. All rights reserved.

https://dailycodingproblem.com/unsubscribe?unsubscribeKey=4bc51c20d27ff65235529ab805ad2a9fa9b6ee59d8e837a95fefb44ca7135115997be5fe

