#### A. **Frontend: Capture Selfie** The frontend will handle capturing the selfie from the user's webcam and sending it to the backend for analysis. ## Step 1: **Set Up Webcam Access:** - Use the `getUserMedia()` API to access the webcam. This will allow users to capture their selfies in real-time. ```javascript async function startWebcam() { const stream = await navigator.mediaDevices.getUserMedia({ video: true }); const video = document.querySelector('#videoElement'); video.srcObject = stream; } startWebcam(); ``` Within the Flutter app: ```html ``` ## Step 2: Capturing the Selfie program: ```javascript function captureSelfie() { const video = document.querySelector('#videoElement'); const canvas = document.querySelector('#canvasElement'); const context = canvas.getContext('2d'); const width = video.videoWidth; const height = video.videoHeight; canvas.width = width; canvas.height = height; context.drawImage(video, 0, 0, width, height); return canvas.toDataURL('image/png'); // Returns the selfie as a base64-encoded image } ``` ## Step 3: Incorporating the ML Models for the Selfie 1. Incorporate into the HTML first ```html ``` 2. Then write it into your javascript program **This is the part to actually research and improve on top of the current existing process** Function for Loading the Model ```javascript async function loadFaceAPI() { await faceapi.nets.ssdMobilenetv1.loadFromUri('/models'); await faceapi.nets.faceLandmark68Net.loadFromUri('/models'); await faceapi.nets.faceRecognitionNet.loadFromUri('/models'); } ``` Function for Comparing the Model to the Captured Selfie: ```javascript async function detectFace(image) { const detections = await faceapi.detectSingleFace(image) .withFaceLandmarks() .withFaceDescriptor(); return detections; } ``` Remember to load the "faceapi" into a separate folder. You will need to upload the face recognition models (`face_landmark`, `ssd_mobilenet`, and `face_descriptor`) from a server or local file system for `face-api.js` to work properly.