#### A. **Frontend: Capture Selfie**
The frontend will handle capturing the selfie from the user's webcam and sending it to the backend for analysis.
## Step 1: **Set Up Webcam Access:**
- Use the `getUserMedia()` API to access the webcam. This will allow users to capture their selfies in real-time.
```javascript
async function startWebcam() {
const stream = await navigator.mediaDevices.getUserMedia({ video: true });
const video = document.querySelector('#videoElement');
video.srcObject = stream;
}
startWebcam();
```
Within the Flutter app:
```html
```
## Step 2: Capturing the Selfie program:
```javascript
function captureSelfie() {
const video = document.querySelector('#videoElement');
const canvas = document.querySelector('#canvasElement');
const context = canvas.getContext('2d');
const width = video.videoWidth;
const height = video.videoHeight;
canvas.width = width;
canvas.height = height;
context.drawImage(video, 0, 0, width, height);
return canvas.toDataURL('image/png'); // Returns the selfie as a base64-encoded image
}
```
## Step 3: Incorporating the ML Models for the Selfie
1. Incorporate into the HTML first
```html
```
2. Then write it into your javascript program
**This is the part to actually research and improve on top of the current existing process**
Function for Loading the Model
```javascript
async function loadFaceAPI() {
await faceapi.nets.ssdMobilenetv1.loadFromUri('/models');
await faceapi.nets.faceLandmark68Net.loadFromUri('/models');
await faceapi.nets.faceRecognitionNet.loadFromUri('/models');
}
```
Function for Comparing the Model to the Captured Selfie:
```javascript
async function detectFace(image) {
const detections = await faceapi.detectSingleFace(image)
.withFaceLandmarks()
.withFaceDescriptor();
return detections;
}
```
Remember to load the "faceapi" into a separate folder.
You will need to upload the face recognition models (`face_landmark`, `ssd_mobilenet`, and `face_descriptor`) from a server or local file system for `face-api.js` to work properly.