# Xlswriter ``` Import xlswriter #create file (workbook) and worksheet outWorkbook = xlsxwriter.Workbook("out.xlsx") outSheet = outWorkbook.add_worksheet() #declare data Names = ["Oklahoma", "Non", "Mary"] Values = [70,80,90] #write headers For item in range(len(names)): outSheet.write(x, y outSheet.write("A1", "ANMES) outSheet.write("B1", "Scores") #declare data to file outSheet.write(" outWorkbook.close() ``` Sci- kit Learn & keras: ``` # create a function that returns a model, taking as parameters things you # want to verify using cross-valdiation and model selection def create_model(optimizer='adagrad', kernel_initializer='glorot_uniform', dropout=0.2): model = Sequential() model.add(Dense(64,activation='relu',kernel_initializer=kernel_initializer)) model.add(Dropout(dropout)) model.add(Dense(1,activation='sigmoid',kernel_initializer=kernel_initializer)) model.compile(loss='binary_crossentropy',optimizer=optimizer, metrics=['accuracy']) return model # wrap the model using the function you created clf = KerasRegressor(build_fn=create_model,verbose=0) # just create the pipeline pipeline = Pipeline([ ('clf',clf) ]) pipeline.fit(X_train, y_train) ```