$$16^{54} \ mod \ 17=3^{24×54} \ mod \ 17 $$ Why? [Public Key Cryptography: Diffie-Hellman Key Exchange (short version) - YouTube](https://www.youtube.com/watch?v=3QnD2c4Xovk) is a good video to understand asymmetric cryptography. There is a jump from 4:34 in the video that is not obvious to everyone. The jump is from 1654mod17 to 324×54mod17, but why? From the comments of video, I’m not the only one who is supprised by this jump. First let me introduce a formula: $$a^b\ mod \ p=((a \ mod \ p)^b) \ mod \ p \ \ \ \ (1)$$ Then the proof: There must be one integer `n` to have $$a \ mod \ p=a−np \ \ \ \ (2)$$ so $$((a \ mod \ p)^b) \ mod \ p=((a−np)^b) \ mod \ p$$ With [Binomial theorem - Wikipedia](https://en.wikipedia.org/wiki/Binomial_theorem), $$(a−np)b=ab+(b1)ab−1(−np)+(b2)ab−2(−np)2+...+(−np)b$$ We could see that all items are times of `p` except $a^b$, $$((a−np)bmodp)=(ab+(b1)ab−1(−np)+(b2)ab−2(−np)2+...+(−np)b)modp=abmodp+0+0+...+0$$ Now we got $$((a−np)^b \ mod \ p)=a^b \ mod \ p$$ Use formula (2) $$((amodp)b)modp=abmodp$$ Now let a as $3^{24}$, and b as 54 in formula (1): $$3^{24×54}\ mod \ 17=((3^{24})^{54}) \ mod \ 17=((324mod17)54)mod17=1654mod17$$