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The study of many-body quantum dynamics in strongly-correlated systems is extremely challenging. To date
few numerical methods exist which are capable of simulating the non-equilibrium dynamics of two-dimensional
quantum systems, in part reflecting complexity theoretic obstructions. In this work, we present a new technique
able to overcome this obstacle, by combining continuous unitary flow techniques with the newly developed
method of scrambling transforms. We overcome the prejudice that approximately diagonalizing the Hamiltonian
cannot lead to reliable predictions for relatively long times. To the contrary, we show that the method works well
in both localized and delocalized phases, and makes reliable predictions for a number of quantities including
infinite-temperature autocorrelation functions. We complement our findings with rigorous incremental bounds on
the truncation error. This approach shows that in practice, the exploration of intermediate-scale time evolution
may be more feasible than is commonly assumed, challenging near-term quantum simulators.

Taming the exponential complexity of many-body quan-
tum systems remains one of the biggest challenges in modern
physics. Exact numerical simulations provide the gold standard
in accuracy, however, the computational cost quickly becomes
prohibitive above a few tens of particles, and even rapid devel-
opments in computing power cannot outpace the exponential
scaling of the complexity of fully solving a many-body quan-
tum system. While there are efficient methods able to estimate
the ground states of various quantum systems captured by local
Hamiltonians – including tensor network and quantum Monte
Carlo techniques – the issue of complexity becomes even more
of an obstacle for time evolution. Time evolution of a given
quantum state under the action of a local Hamiltonian is BQP
complete in worst case complexity. For this reason, one cannot
hope to find universal classical methods that can accurately
and efficiently simulate this evolution for all time and all local
Hamiltonians [1]. While the ultimate goal may be the devel-
opment of flexible and reliable quantum simulators [2–4] able
to directly realize many models of interest in the near-term
we must continue to rely upon classical computers in order to
simulate quantum matter.

To that end, many highly effective numerical techniques
have been developed to study many-body quantum systems
subject to controlled and clear approximations. Leading the
charge are tensor network methods [5, 6], instances of vari-
ational methods that build on tensor networks, particularly
matrix product state (MPS) approaches in one dimension and
projected entangled pair states (PEPS) techniques in two di-
mensions. These methods work well for ground states and short
time evolution, but are limited in the way they can capture dy-
namics, a state of affairs sometimes dubbed the ‘entanglement
barrier’. This core limitation stems from the generation of en-
tanglement, as highly entangled systems require large bond di-
mensions, giving rise to computationally intractable situations.
Quantum Monte Carlo techniques [7] are also widely used –
including for non-equilibrium dynamics [8, 9] – however, they
suffer from the well-known sign problem and stability issues.
Dynamical mean-field theory can also capture quantum dynam-
ics [10, 11], but again stability matters arise. These obstacles
all reflect the computational hardness of the task.

In this work, we develop a radically different approach to ad-
dressing the issue of time evolution in closed quantum systems.
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Scrambled Hamiltonian

Figure 1. A cartoon illustration of the scrambling process. a) The
conventional CUT process, using a single unitary transform U to
diagonalise a Hamiltonian H , smoothly transforming from the initial
basis (l = 0) to the diagonal basis (l → ∞). b) The scrambling
transform S first induces an ‘effective disorder’ even in completely
clean systems, which allows established CUT techniques to then take
over and efficiently diagonalise the ‘scrambled’ Hamiltonian S†HS
with a second unitary transform U .

Combining the established method of continuous unitary trans-
forms (CUTs) – also known as ‘flow equations’ [12–19] – with
the newly developed method of scrambling transforms, we
present a flexible and powerful approach to diagonalizing large
Hamiltonians and computing time evolution to very long times.
The key ingredient in our work is the use of scrambling trans-
forms to improve the convergence properties of CUT-based
methods, significantly improving their accuracy and validity.
We demonstrate the potential of this technique by computing
the dynamics of disordered quantum systems in one and two
dimensions. The limitation is a very different one compared
to tensor network approaches: here, it is not entanglement that
provides a limitation, but the accuracy of the approximate trans-
form used. Heuristically, we find that in practice this restriction
is less severe than overcoming the entanglement barrier.

We will focus on a generic system of interacting fermions,
given by the Hamiltonian

H =
∑
i,j∈L

H
(2)
ij : c†i cj : +

∑
i,j,k,q∈L

H
(4)
ijkq : c†i cjc

†
kcq :,

=: H(2) +H(4), (1)
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Figure 2. An illustration of how a two-dimensional lattice can be
mapped onto a one-dimensional chain with correlated long-range
hopping, which can be easily handled with CUT-based techniques.

where : ... : represents normal-ordering with respect to the
vacuum, and |L| =: L is the system size in the total number
of modes. We make no assumptions as to the form of the cou-
plings, nor the dimensionality of the system: The complexity
of the calculation is set by the total number of lattice sites L,
not by their geometry or size of the local Hilbert spaces. A two-
dimensional system can be unfolded onto a one-dimensional
system with long-range hopping, as sketched in Fig. 2, which
does not pose a problem for CUT-based techniques. A similar
procedure can be followed in three dimensions.

Flow equation methods diagonalise the Hamiltonian by suc-
cessively applying infinitesimal unitary transforms dU(l) =
exp(−η(l)dl) = 1 − η(l)dl, where η(l) is the generator
and l represents a fictitious “flow time” such that l = 0 is
the initial Hamiltonian, and the parametrized Hamiltonian
H(l) := U†(l)HU(l) becomes diagonal in the limit l → ∞,
where the full unitary transform U(l) = Tl exp(−

∫ l

0
η(l′)dl′)

is a time-ordered integral over flow time l. The diagonaliza-
tion procedure can be recast as solving the equation of motion
dH/dl = [η(l), H(l)] [17, 18]. We storeH(2) as a matrix with
O(L2) entries and H(4) as a tensor of order four with O(L4)
real entries, and employ a similar procedure for the generator
η(l) =: η(2)(l) + η(4)(l). This allows the relevant commu-
tators to be computed efficiently as the sum of all one-point
contractions of pairs of matrices or tensors [20]. The main
consequence of fermionic statistics is the minus signs which
arise when computing these contractions; the method can be
applied to bosons with minor changes.

A common choice of generator is η(l) := [H0, V (l)],
where H0(l) and V (l) are, respectively, the diagonal and
off-diagonal parts of the Hamiltonian. In what follows, we
will make use of the symbol V whenever referring to off-
diagonal elements. This is often known as the Wegner gener-
ator [17, 18]. The diagonalisation can be seen from the fact
that the squared ∥V (l)∥22 is non-increasing in the fictitious
time l as d∥V (l)∥22/dl = −2∥η(l)∥22 ≤ 0 (see, e.g., Ref. [21]).
Convergence relies upon the model in question having a clear
separation of energy scales in the initial basis. Models where
this is not true – such as homogeneous systems, or disordered
systems with many near-degeneracies (known as resonances)
– cannot be fully diagonalised by this generator, as they act
like unstable fixed points. Perturbing the Hamiltonian away
from this fixed point can allow the flow to begin, however,
small perturbations can result in long convergence times while
large perturbations improve convergence but risk changing
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Figure 3. The complexity χ of the transformed creation operator c†i
in the middle of the system. Error bars show the standard deviation
over disorder realizations. Panels (a) and (b) show the results in
one dimension (L = 8, 10, 12, 16, 24, 36, 48, 64, 100) for random
and quasi-periodic potentials respectively, while panels (c) and (d)
show the same in two dimensions (L2 = 9, 16, 25, 36, 49, 64, 100).
Dashed black lines close to the origin in panels (a) and (b) are fits with
the form χ ∝ 1/L3, valid for large systems and strong disorder. Insets
show the un-normalised complexity (i.e., the numerator of Eq. (4)),
which tends to a constant in strongly-disordered one-dimensional
chains, but grows in two dimensions even for strong disorder.

the underlying physics. Here, we resolve this by introducing
scrambling transforms, which are targeted unitary transforms
aimed at lifting degeneracies which the Wegner procedure
alone is unable to resolve. As they are unitary, they cannot
change the underlying physics: they simply act to ‘prepare’ the
Hamiltonian in a basis more amenable to being diagonalized
by the conventional Wegner flow. The procedure is sketched
in Fig. 1. The (infinitesimal) scrambling transform takes the
form dS(l) = exp(−λ(l)dl), with a generator λ(l) given by

λij(l) :=

{
sgn(i− j)Jij(l) : c

†
i cj : if Jij(l) ≥ δh

0 otherwise,
(2)

with δh = ε|hi(l) − hj(l)|, where ε > 0 is the threshold pa-
rameter which controls how easily the scrambling transform
triggers. For ε = 0, this reduces to the Toda-Mielke gener-
ator [21, 22]. Here, we use ε = 0.5. The full scrambling
transform S(l) can be written as a time-ordered integral over
dS(l). It is employed at the beginning of the flow, and during
the diagonalization procedure if degeneracies are encountered.

The particular scrambling transform used here is quadratic
and does not induce any new higher order terms, however, the
action of the Wegner generator will typically lead to the gener-
ation of new terms containing six or more fermionic operators,
similar to the way that such terms can arise in renormaliza-
tion group procedures. The central approximation of the CUT
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Figure 4. Infinite-temperature correlation functions shown for a variety of disorder types, strengths, dimensionalities and system sizes. The grey
dot-dashed vertical line indicates the approximate timescale beyond which accuracy cannot be guaranteed, however, the results typically remain
reasonable until much longer timescales. In all plots, the result from exact diagonalisation (ED) is shown as a pale dashed line. The equivalent
result from the flow equation (FE) method is shown by circular markers, and the result obtained using flow equations for a much larger system is
indicated by a dark solid line. Black dashed lines show the long-time average computed directly without explicit time evolution, valid at strong
(quasi)disorder only. The results are averaged over Ns ∈ [64, 256] disorder realizations, depending on system size. Error bars indicate the
variance over disorder realizations, for clarity shown only for the flow equation results for L = 16 (L2 = 4× 4 in two dimensions). In both
D = 1 and D = 2, the quasi-periodic potential exhibits most much robust localization at large values of d/J , but by contrast also exhibits more
complete thermalisation at low values of d/J due to the underlying single-particle phase transition at d/J = 2.

technique is that the Hamiltonian must be truncated, and terms
above a certain order neglected. We shall present rigorous
error bounds later; for the moment, we emphasize that in cases
where the method is insufficiently exact, higher order terms
can be systematically included until the desired precision is
reached, at a cost polynomial in the system size.

We will investigate initial local Hamiltonians of the form
H =

∑
i∈L[hi : ni : +J(: c

†
i ci+1 : +H.c.) + ∆0 : nini+1 :],

using open boundary conditions, with J = 1 and ∆0 = 0.1. In
one dimension, this Hamiltonian maps onto the XXZ chain via
a Jordan-Wigner transform. We diagonalise these Hamiltoni-
ans in both one and two dimensions, for two different choices
of hi: random disorder (hi ∈ [−d, d]) and quasi-periodic (QP)
potentials (in one spatial dimension hi := d cos(2πi/ϕ+ θ),
with ϕ := (1 +

√
5)/2 and θ a (real) randomly chosen phase

that plays the role of a ‘disorder realization’; in two dimen-
sions given by hi := d(cos(2πix/ϕ+θ)+cos(2πiy/ϕ2+θ2)),
where (ix, iy) represent the coordinates of lattice site i, ϕ2 =

1 +
√
2 and the θ2 is another random phase). For simplicity,

we shall refer to d as the ‘disorder strength’ in both cases. The
end point is an (approximately) diagonal Hamiltonian

H̃ =
∑
i∈L

h̃i : ñi : +
∑
i,j∈L

∆ij : ñiñj : +R, (3)

where R represents neglected higher-order terms, typically
of order O(∆2

0) and higher. The interaction coefficients
have been shown to decay exponentially with distance in
(quasi)disordered systems, ∆ij ∝ e−|i−j|/ξ [20, 23–27].

Once the Hamiltonian has been diagonalized, it is possi-
ble to obtain a closed-form solution (within a given trun-
cation scheme) to the Heisenberg equation of motion for

any operator O expressed in the diagonal basis. The oper-
ator must first be transformed according to the flow equa-
tion dO/dl = [η(l), O(l)], where η(l) collectively denotes
both the scrambling and Wegner generators. This transformed
operator also contains valuable information about the local-
ity of the unitary transform, and can be used to extract both
a localization length and as a measure of the “complexity”
of the diagonalization procedure, which can be linked to
the existence of Lieb-Robinson bounds in flow time [28].
Specifically, the transformed creation operator takes the form
c†i =

∑
j A

(i)
j c̃†j +

∑
j,k,q B

(i)
jkq c̃

†
j c̃

†
k c̃q , and higher-order terms

are neglected. A measure of the complexity of the transformed
operators is given by the fraction of non-zero terms which
appear in this operator expansion. In practice, we choose a
cutoff value ϵ = 10−6 below which we consider terms to be
zero. The complexity in this sense is defined as

χ(ϵ) =
|{x ∈ (A ∪B)|x2 > ϵ2}|

|{x ∈ (A ∪B)}| , (4)

where (A ∪ B) represents the set of all coefficients Ai and
Bijk in the operator expansion of c†i . We also define χ(ϵ) =
|{x ∈ (A∪B)|x2 > ϵ2}|. Results are shown in Fig. 3, demon-
strating a qualitative difference between one and two spatial
dimensions. In one dimension, we find a phase where χ(ϵ)
tends to a constant, and χ(ϵ) ∝ (1/L)3 for large system sizes,
indicating a ‘low complexity’ situation at strong disorder, as
well as a higher complexity phase at small values of d where
χ(ϵ) increases rapidly with system size, suggestive of thermal-
isation. In two dimensions, we find that χ(ϵ) always increases,
although in the case of the QP potential at large values of d,
it increases sufficiently slowly that the normalised complexity
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Figure 5. Finite-size scaling results for the long-time average of the infinite-temperature correlation function C(t), averaged over a time window
of Jt ∈ [50, 103], and then averaged over Ns ∈ [32, 1024] disorder realizations depending on system size. (a-d) Results for various system
sizes, disorder types and strengths, and dimensionalities. Error bars indicate the variance over disorder realizations. The black squares indicate
the results obtained from exact diagonalisation, shown for small system sizes only. System sizes are L = 8, 10, 12, 16, 24, 36, 48, 64 and 100
in one dimension, and L2 = 9, 16, 25, 36, 49, 64 and 100 in two dimensions. (e) The result of linearly extrapolating to L → ∞. Error bars
indicate the uncertainty in the fits [shown as dashed lines in panels (a-d)] to extract the scaling behavior; lines are smoothed guides to the eye.

χ(ϵ) still vanishes. By contrast, for small values of d in two
dimensions, the complexity χ(ϵ) remains much larger than
zero for all system sizes studied here. This suggests a slow
crossover from a high complexity phase – consistent with the
expectation of thermalisation at small values of d – to a low
complexity phase with anomalous thermalisation properties.

Previous work which have used CUT methods to com-
pute non-equilibrium dynamics [25, 26, 29] employed a com-
putationally costly inversion of the unitary transform in or-
der to obtain time-evolved operators in the original basis.
Here, we circumvent this limitation and directly obtain the
infinite-temperature autocorrelation function, a highly non-
trivial and challenging quantity to compute. The thermal
expectation value of any arbitrary operator O is given by
⟨O⟩ = Tr[exp(−βH)O]/Tr[exp(−βH)], where β = 1/T
is the inverse temperature (in units of kB = 1). In the limit
of T → ∞, the expectation value becomes a uniform average
over eigenstates, which in the diagonal basis are trivial product
states. We approximate this average for large systems by ran-
domly sampling Ns ∈ [50, 256] half-filled eigenstates, with an
associated standard error that scales as 1/

√Ns. Specifically,
we compute the dynamical autocorrelation function

C(t) = 4⟨(ni(t)− 1/2)(ni(0)− 1/2)⟩. (5)

To minimize boundary effects, we choose i to be in the cen-
ter of the system. We benchmark the performance of this
approximation by comparison with exact diagonalization, mak-
ing use of dynamical quantum typicality [30–37] to compute
the infinite temperature correlation function. This is a highly
demanding quantity that can be extremely challenging to com-
pute with other methods, but can be obtained very efficiently
with the flow equation approach. Results for system size
L = 16 (L2 = 4× 4 for two dimensions) are shown in Fig. 4,
demonstrating excellent agreement with exact diagonalization

in both one and two dimensions, even to timescales as long
as tJ = 105. This is beyond the naive expectation that the
accuracy should break down beyond timescales tJ ∼ 1/∆2

0,
corresponding to the typical inverse magnitude of the terms
cut off by the truncation. We also show results for larger sys-
tem sizes, demonstrating that they remain smooth and under
control. Fig. 5 shows results for system sizes up to L = 100
(L2 = 10× 10 in two dimensions), along with a linear fit indi-
cating the L→ ∞ behavior. Strikingly, very little dependence
on system size is observed in one dimension, although in two
dimensions there is a slow trend towards decreasing values of
C(t) as the system size increases, except for strong quasiperi-
odic potentials. This is consistent with the expectation that
many-body localization may be ultimately unstable in two di-
mensions, although these results suggest one must go to very
large system sizes and long times to see signs of this potential
instability. For weak random disorder in two dimensions, the
linear fit for large values of L breaks down, suggesting our
results are likely to overestimate the long-time value of C(t)
as L→ ∞. Additionally, at any finite order of truncation there
may still exist higher-order processes which could contribute
to thermalisation on very long timescales. Nonetheless, for a
given truncation scheme we can make precise statements about
the validity of this technique.

To do so, we develop an incremental bound on the error in
the unitary transform. If at each flow time step we discard all
newly-generated terms above fourth-order, we obtain

H(l + dl) = H(l) + dl[η(l), H(l)]

=: H(l) + dl(dH(l) +A(l)), (6)

where dH(l) = [η(2)(l), H(2)(l)] + [η(2)(l), H(4)(l)] +
[η(4)(l), H(2)(l)] represents the terms of the flow which are
kept and A(l) = [η(4)(l), H(4)(l)] + T represents the trunca-
tion error, where the higher-order terms T are assumed to be
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negligible in what follows. The norm of the truncation error
A(l) at each infinitesimal time step is upper bounded by

∥A(l)∥2 = ∥[η(4)(l), H(4)(l)]∥2 ≤
√
2∥η(4)(l)∥2∥H(4)(l)∥2

≤ 2∥H(4)
0 (l)∥2∥V (2)(l)∥2∥H(4)(l)∥2 (7)

using the sub-multiplicativity of the ∥.∥2 norm [38]. The total
truncation error in flow time can be written as an integral of
Eq. (7)

εT ≤ 2

∫ lmax

0

dl∥H(4)
0 (l)∥2∥V (2)(l)∥2∥H(4)(l)∥2 (8)

over l. Typical values of V (2)(l) decay exponentially in flow
time, i.e., [V (2)(l)]ij ∝ exp(−(hi − hj)

2l)[V (2)(0)]ij . As-
suming random disorder drawn from a box distribution of
width [−d, d], such that the mean value of this squared energy
difference is 2d2/3, and that the largest parts of the interaction
tensor remain proportional to the initial interaction strength (as
new terms induced by the flow should always be smaller than
the initial interactions), the error can be approximated as

εT ∝ J0∆
2
0

∫ lmax

0

dl e−l2d2/3 =
lmax→∞

3

2

J∆2
0

d2
. (9)

In the case of weak (quasi)disorder, the disorder bandwidth d
is replaced by the effective bandwidth d̃ ≥ d induced by the
scrambling transform [39]. A numerical analog can be com-
puted by replacing the Hilbert-Schmidt (or Frobenius) norms
in Eq. (7) with tensor Frobenius norms; the typical truncation
error at each flow time step is well below one percent [39].

The above analysis indicates that energy differences be-
low O(J∆2

0/d
2) cannot be reliably resolved, implying that

the method will break down on timescales on the order
t ∝ d2/(J∆2

0) when oscillations at corresponding frequen-
cies ω ∼ O(J∆2

0/d
2) become relevant for the dynamics. The

accuracy of the method can be systematically improved by
incorporating additional higher-order terms into the truncated
Hamiltonian, allowing accurate simulations of quantum dy-
namics to even longer times (proportional to 1/∆3

0 at the next
order of approximation) with a computational cost that remains
polynomial in the system size. Future developments in mas-
sively parallel implementations of the tensor flow equation
method [20] used in this work, as well as advances in computer
hardware, will facilitate extension of this method to larger
system sizes, longer timescales, stronger interactions, and ad-
ditional physical systems (including both driven [27, 40] and
dissipative [41] systems, which have been previously studied
with CUT-based techniques). Scrambling transforms may be
of interest in a variety of other contexts, as they are essentially
a way of transforming a highly entangled system into a simpler
representation that is easier to simulate.

We end the discussion by briefly comparing the findings with
tensor network methods. Standard tensor network methods are
challenged in time evolution by the exponentially growing
bond dimension that is required to accommodate the states
faithfully in time, for the linear growth of entanglement. Some
steps have already been taken to allow tensor networks to

access longer times [42–45], e.g., by means of folding tech-
niques [44] or adaptive mode transformations [43]: The latter
overcomes the prejudice that quantum states have to be rep-
resented in real space: One can co-rotate the frame of mode
transformations, so that only the entanglement between these
effective modes need to be accommodated. The ideas intro-
duced here show that one can go further than that, by overcom-
ing the prejudice that the fermionic mode transformation needs
to be linear: accepting small truncation errors in the procedure,
one can even fully diagonalise the Hamiltonian to a good ap-
proximation. There are good reasons to believe that this is a
favourable mindset to reach long simulation times. First con-
nections between flow equation and tensor network methods
have been made [46], anticipating the time-dependent varia-
tional principle based on a differential geometric picture [47].
It is conceivable that the ideas introduced here can be further
merged with tensor network techniques, as one could think of
final Hamiltonians that are not treated as fully diagonal ones.
There is also the intriguing possibility of combining scram-
bling transforms and other CUT-based techniques with tensor
network approaches, such as entanglement-based continuous
unitary transforms [48], which may allow tensor network meth-
ods to break through the entanglement barrier and access much
longer timescales than are currently available.

In this work, we have introduced a flow-based method
equipped with scrambling transforms that allow for simulating
interacting fermionic quantum many-body systems to good
accuracy for intermediate and long times. Adding modern ma-
chine learning techniques into the mix could also allow for the
development of efficient data-driven scrambling transforms
tailored for specific problems. Such a classical development
can also be seen as a challenge to dynamical quantum simu-
lators [2, 4] which aim to probe non-equilibrium properties
of quantum matter beyond the reach of classical computers.
These are exciting avenues for future progress.
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A. Computing and integrating the flow equation

All commutators computed in this work follow the scheme
of Ref. [20], where the representation of the Hamiltonian in
terms of a quadratic component (stored in memory as a matrix)
and quartic component (stored as a tensor) allow the commuta-
tors to be recast in terms of matrix/tensor contractions, which
are highly-optimised linear algebra operations that can be per-
formed efficiently on modern computing hardware. A complete
description is contained in the Supplemental Information [39].
We use vacuum normal-ordering, such that higher-order terms
in the running Hamiltonian have no feedback onto lower-order
terms. The incorporation of additional non-perturbative correc-
tions due to different choices of normal-ordering has previously
been done in the time-independent scenario [50], but in the
non-equilibrium setting is left for future work. This would
require specifying a particular reference state with respect to
which the corrections are computed, and depending on the
structure of this state, the resulting corrections may be hard
to vectorize, complicating their implementation on graphics
processing units (GPUs). Calculations for all system sizes with
more than a total of 16 lattice sites were performed on GPUs
(specifically, NVIDIA RTX A5000 GPUs with 24Gb RAM and
NVIDIA RTX 2080Ti GPUs with 12Gb RAM) using single
precision arithmetic.

The flow equation dHl/dl = [η(l), H(l)] is solved using a
mixed 4th/5th order Runge-Kutta integration method as im-
plemented in the JAX library [51], making use of an adaptive
stepsize algorithm for high accuracy. The maximum integra-
tion time used was lmax = 1000, and the integration is stopped
before then if the Hamiltonian is diagonalized to the target
accuracy, which we choose to be when max[|V (2)|] < 10−6

and max[|V (4)|] < 10−3. Results for longer integration times
showed no significant increase in accuracy, despite incurring
a significantly higher computational cost. This is because the
running HamiltonianH(l) approaches full diagonalisation only
asymptotically at large values of l, so the use of larger values
of lmax leads to diminishing returns.

B. Computing the dynamics

The transformed number operator is reconstructed from the
transformed creation/annihilation operators for large fictitious
time

ni(l → ∞) = c†i (l → ∞)× ci(l → ∞), (10)

with the creation operator given by transformed cre-
ation/annihilation operators

c†i (l → ∞) =
∑
j

A
(i)
j c̃†j +

∑
j,k,q

B
(i)
jkq c̃

†
j c̃

†
k c̃q (11)

and the annihilation operator obtained by taking its Hermitian
conjugate ci(l → ∞) = (c†i (l → ∞))†. Multiplying these
together allows us to reconstruct the number operator including
terms up to sixth-order in the fermionic creation/annihilation

operators for the diagonal basis, c̃†i and c̃i. The number opera-
tor can then be time-evolved in the diagonal basis according to
the Heisenberg equation of motion, neglecting newly-generated
higher-order terms, resulting in a closed-form solution. This
step is performed on CPUs rather than GPUs due to memory
limitations, and is a prime candidate for future efficiency im-
provements. At long times, near-degenerate single-particle
eigenvalues can still lead to divergent terms in this solution
(consistent with the expectation that the simulation of a BQP-
hard problem will eventually run into accuracy issues on a clas-
sical computer), however, these terms are strongly suppressed,
arising only very rarely and at very long times. To avoid these
rare scenarios dominating the averaged data, in the two dimen-
sional dynamical data we exclude disorder realizations where
the maximum value of |C(t)| > 1.1. (Alternatively, we could
have used the typical rather than mean value of C(t).) See
the Supplementary Information for full details of the calcula-
tion and where divergent terms arise from. In one dimension,
this procedure is not necessary as the divergent terms are rare
enough to have essentially no effect, as can be seen from the
data in Fig. 4. It is possible to subtract the divergent terms
when they are encountered, however, we do not employ this
procedure here. The long-time average can be obtained directly
by setting all off-diagonal terms in the transformed number op-
erator to zero (as when time-evolved, they acquire oscillating
phases which average to zero). For systems with greater than
36 lattice sites in total, we neglect the sixth order contributions
and keep only the quadratic and quartic terms when computing
the dynamics. For the systems considered here, the sixth-order
terms have a negligible effect, which can be seen from the
qualitative agreement between small and larger system sizes.

C. Rescaling the correlation function

As the norm of the number operator ni is not precisely con-
served by the unitary transform, we rescale the correlation
function for each disorder realization according to the ansatz
C(t)7→c1(C(t)− c2), where c1 and c2 are determined by mini-
mizing the error with respect to the short-time dynamics of the
non-interacting system (as many-body interactions are essen-
tially irrelevant at very short times). This is computationally
efficient, as we get the exact dynamics of the non-interacting
system essentially for free in this formalism by just retaining
the quadratic components of the Hamiltonian and relevant ob-
servables. The rescaling employed in this work is justified a
posteriori by the clear agreement between the rescaled C(t)
and the exact result, computed for system sizes small enough
for the comparison to be practical. For small enough systems,
an alternative would be to construct the operator as a matrix in
the full Hilbert space and renormalize it by hand, however, this
is not practical for systems as large as those considered here.
We emphasize that the norm is preserved to high accuracy for
sufficiently strong disorder, and the effects of this rescaling
are most important for the weakly disordered systems. This
is independent of any error introduced in the eigenvalues, and
reflects the difficulty in simultaneously preserving the unitary
evolution of both the Hamiltonian and the number operator
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within the same truncation scheme. The norm of the operator
could in principle be exactly preserved by constructing the uni-
tary transforms subject to additional constraints [18], however,
in practice this is challenging to implement. This underscores
the need for further work in developing more flexible genera-

tors for the types of continuous unitary transform developed
here, perhaps in concert with machine learning approaches to
design data-driven generators tailored for specific problems
subject to specific hard-to-satisfy constraints.
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Figure 6. a) The induced disorder bandwidth following the application of the scrambling step, with hopping J = 1 and different values of the
cutoff ϵ and the microscopic (random) disorder strength d. System size if L = 36, and the results are averaged over 50 disorder realisations.
Error bars indicate the standard deviation over disorder realisations. b) A comparison of the median relative error ε in the eigenvalues for the
method with (blue) and without (orange) the scrambling transform, for an interacting system of size L = 10 with J = 0.5, interaction strength
∆0 = 1.0, maximum flow time lmax = 50 and averaged over 192 disorder realisations. Error bars indicate the median absolute deviation.

SUPPLEMENTARY INFORMATION

In this Supplementary Information, we provide a detailed description of the numerical procedure, additional error analysis to
demonstrate the reliability of the method, and further details on the evolution of local operators under the action of a continuous
unitary transform, and how time evolved operators are computed and measured using this procedure. A pedagogical tutorial to the
numerical method is available in the form of an interactive Jupyter notebook.

Scrambling transform

Much of the main results rely on the use of scrambling transforms, which are targeted unitary transforms used to remove
degeneracies which are problematic for the Wegner generator. The scrambling transform does not have to diagonalise the
Hamiltonian, even partially, but instead is used to induce an effective artificial disorder d̃ ≥ d. The generator for the scrambling
transform is defined to be

λij(l) =

{
sgn(i− j)Jij(l) : c

†
i cj : if Jij(l) ≥ δh,

0 otherwise,
(12)

with δh = ε|hi(l)− hj(l)|, where ε > 0 controls how easily it triggers. In Fig. 6a), we show the induced disorder bandwidth
d̃ = |max(H0(l

∗))− min(H0(l
∗))|/2 (where l∗ denotes the flow time at which the scrambling transform is finished) for three

different choices of cutoff ϵ, computed for a non-interacting system of size L = 36 and averaged over 50 disorder realisations. At
strong values of the microscopic disorder d, the scrambling transform does essentially nothing. At small values of d, however,
the scrambling transform has a much more dramatic effect, leading to a substantial induced disorder. This implicitly disordered
model can then be efficiently diagonalised by the canonical Wegner generator, which requires a clear separation of energy scales
in order to successfully diagonalise the full Hamiltonian. Fig. 6b) shows the relative error in the (many-body) eigenvalues ε for
an interacting system of size L = 10, with ∆0 = 1.0 (i.e., beyond the regime in which our truncation scheme can be expected
to be accurate). Despite these strong interactions, the Wegner generator used in tandem with the scrambling transform returns
surprisingly accurate results even at very weak disorder, while the Wegner generator alone performs extremely poorly at low
disorder strengths due to its inability to remove off-diagonal terms which couple near-degenerate single particle sectors, leading in
turn to the divergence of the interacting part of the Hamiltonian. At larger values of the disorder strength d, both methods return
almost identical results.

Numerical considerations

In order to make this process efficient, we make use of the tensor flow equation (TFE) technique which recasts the commutators
as a series of matrix/tensor contractions, avoiding the algebraic complexity of previous methods by turning the construction of the

https://github.com/sjt48/PyFlow/blob/main/tutorial/TensorFlowEquations_StepByStepGuide.ipynb
https://github.com/sjt48/PyFlow/blob/main/tutorial/TensorFlowEquations_StepByStepGuide.ipynb
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flow equation into an efficient numerical procedure. Any Hamiltonian may be written in a generic form as

H(l):=H(2)(l) +H(4)(l) + ...

=
∑
i,j

Hij(l) +
∑

i,j,k,q

Hijkq(l) + ... (13)

where the superscripts indicate how many operators appear in each term, e.g., H(2)(l) contains all quadratic terms, H(4)(l) all
quartic terms and so on. This can be stored in memory as a matrix (H(2)) and a fourth-order tensor (H(4)), plus higher-order
terms as required. A similar decomposition can be performed for the generator

η(l):=η(2)(l) + η(4)(l) + ... . (14)

This means that the flow equation can be computed as

[η(l), H(l)] = [η(2)(l), H(2)(l)] + [η(2)(l), H(4)(l)] + [η(4)(l), H(2)(l)] + ... . (15)

Each of these commutators can be rewritten as the sum of all one-point contractions between the arrays η(n)(l) and H(m)(l), as
shown in Fig. 7a) and Fig. 7b), with the result being an array of order (n+m− 2) [20]. Note that if any arrays are present with
an order greater than 2, the above commutator cannot be written as a closed expression and some form of truncation must be
employed. The source term in the flow (Eq. (15)) which generates sixth order terms is given by

[η(4)(l), H(4)(l)] = [[H
(4)
0 (l), V (2)(l)] + [H

(2)
0 (l), V (4)(l)], H(4)(l)] (16)

the elements of which we can estimate to be of order O(J0∆
2
0) or smaller. A more detailed error analysis is given in the main text.

For weak interactions, even the induced sixth-order terms will be extremely small, and the eighth-order and higher terms will be
essentially negligible. The exception to that is if any elements of H(4)(l) become of order one during the flow, at which point the
higher order terms may be required to retain accuracy. The chances of this happening are heavily suppressed by the scrambling
transform. We shall see later that higher-order terms in this framework enter with increasing powers of the interaction strength,
and so by working at weak interactions we can ensure that the higher-order terms are essentially negligible.

Two-point and higher contractions can also be taken into account [50], however, we shall not consider these in the present
manuscript as they are only non-zero if a state other than the vacuum is chosen for the normal-ordering procedure. This can be
important for the incorporation of sophisticated non-perturbative corrections [50] or for finite-temperature contributions [18], but
in the present case we will take the simpler approach of using vacuum normal-ordering.

The computational cost of this technique is set by the number of lattice sites, and by the highest-order of terms included in
Eq. (1). In this work, we shall consider running Hamiltonians with up to fourth order (O(L4)) and sixth order (O(L6)) terms
included. Crucially, the overall computational cost does not depend on the geometry or dimensionality of the lattice sites: for
example, a one-dimensional system of size L = 64 can be diagonalized with essentially the same computational cost and accuracy
as a two-dimensional system of size L = 8× 8, or a three dimensional system of size L = 4× 4× 4.

Error analysis

The relative error in the i-th eigenvalue Ei is defined as

ϵi :=

∣∣∣∣EFE
i − EED

i

EED
i

∣∣∣∣ (17)

where the superscripts FE and ED refer to the eigenvalues obtained by flow equations and exact diagonalisation respectively.
We compute the median error within each disorder realization (as the error distribution has significant skewness, and a small
number of outliers dominate the mean error), and then average this over disorder realizations to obtain the results shown in Fig. 8.
We find that the error remains small and under control for all system sizes and disorder strengths considered here. As expected,
the error is larger in two dimensions than in one dimension, however, the error shrinks with increasing system size and remains
within acceptable limits.

We can also define a second error metric, this time a self-consistent measure of the truncation error accrued over the course of
the entire flow, based on a modified version

εF =
1

lmax

∫ lmax

0

dl∥H(4)
0 (l)∥F ∥V (2)(l)∥F ∥H(4)(l)∥F (18)
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+

Figure 7. a) A schematic of how the commutator between two matrices may be computed in terms of one-point contractions. Creation and
annihilation operators are indicated by up and down arrows respectively, and connected indices are summed over. The indices of the resulting
arrays are rearranged into a consistent order (taking into account the appropriate (anti)commutation relations), and then added together to get the
final result. This is equivalent to

∑
i,j,k,q AijBkq[c

†
i cj , c

†
kcq] =

∑
i,j,k AikBkqc

†
kcq +AijBkicjc

†
k. b) A schematic of how the commutator

between an order two and four array may be computed in terms of one-point contractions. The most important thing is that the indices are put in
a consistent order – using appropriate (anti)commutation relations – before the four resulting arrays are added together.
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Figure 8. The relative error in the eigenvalues computed with flow equations and with exact digaonalisation, for a variety of system sizes and
disorder strengths, averaged over Ns ∈ [256, 1024] disorder realizations depending on system size. a) The relative error in one dimension. b)
The relative error in two dimensions.

of Eq. (8) from the main text, where the norms ∥.∥F are now tensor Frobenius norms (i.e., square root of the sum of the squares
of the entries of each tensor), and the integral is normalised by the total flow time, giving a measure of the average truncation
error per timestep over the course of the entire diagonalization procedure. We approximate this integral numerically using the
trapezoidal rule. Results are shown in Fig. 9, demonstrating that the errors due to the truncation of the running Hamiltonian
remain small and under control throughout the procedure.

Overall, there are two sources of errors: This is on the one hand the dominant truncation error in the non-linear transformations
along the fictitious time of the flow, bounded from above in Frobenius norm above. On the other hand, there is the error arising
from pinching, when replacing matrices and tensors that are to a very good approximation diagonal

H(lmax) =
∑
i,j

Hij(lmax) +
∑

i,j,k,q

Hijkq(lmax) (19)

for the final fictitious time lmax by exactly diagonal matrices and tensors as

H̃ =
∑
i∈L

h̃i : ñi : +
∑
i,j∈L

∆ij : ñiñj : . (20)
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Figure 9. The average truncation error at each flow time step, as defined in the text, averaged over Ns ∈ [32, 1024] disorder realizations.
Solid lines represent random disorder, and dashed lines show the results for the quasi-periodic potential. a) The truncation error in one
dimension. b) The same quantity in two dimensions. Note that the error bars are much larger for random disorder than for the quasi-periodic
potential, reflecting the greater likelihood of rare disorder-free regions (often known as ‘resonant regions’ in the MBL literature) which act as
effectively delocalised, and would require higher-order terms in the truncation to fully capture. These terms are typically absent in deterministic
quasi-periodic potentials.

Computing the flow of operators

Once we have diagonalized the Hamiltonian, we will wish to compute various observables in the diagonal basis, and so we
need a way to transform arbitrary operators into the same basis as the Hamiltonian. This can be done straightforwardly, similarly
to how the Hamiltonian itself is transformed. Rather than directly transforming fermionic number operators, as in previous works,
here we will work directly with fermionic creation/annihilation operators. These are cheaper to compute by a factor of L, and
once we know the form of either the creation or annihilation operator, the other follows straightforwardly by taking the Hermitian
conjugate.

The flow of the creation operator is given by

dc†i (l)
dl

= [η(l), c†i (l)]. (21)

which can be computed at the same time as the flow of the Hamiltonian, meaning that η(l) does not need to be stored and can be
discarded after each time step. Under the action of the flow, the creation operator takes the form

c†i (l) =
∑
j

A
(i)
j : c̃†j : +

∑
jkq

B
(i)
jkq : c̃†j c̃

†
k c̃q : +... (22)

which can be stored in memory as a unit order array (vector) plus an order three array (tensor), in contrast to the number operator
which must be stored as a larger order two array plus an order four array. To reconstruct the number operator at any point during
the flow, we simply multiply Eq. (22) with its Hermitian conjugate using the definition

ni(l) := c†i (l)ci(l). (23)

Note that in addition to being cheaper by a factor of L as compared with previous work which directly transformed the number
operator up to quartic order [20, 50, 52], this also allows us immediate access to the sixth-order contributions to the number
operator, which were not included in previous work. This approach is therefore faster, more efficient, and more accurate. In
practice, we compute the creation operator to order (O − 1), where O ∈ {4, 6} is the order of the effective Hamiltonian. For
O = 6, this allows us to reconstruct the number operator up to terms including ten fermionic operators, in principle allowing us to
take into account extremely weak effects that would only appear at high orders in perturbation theory. In practice, we do not
go beyond sixth order, as otherwise the calculation becomes too memory-intensive for the present hardware, and for the largest
system sizes considered in this work we do not go beyond fourth order.

This also allows us to transform (product) states from the microscopic basis to the diagonal basis, and vice-versa. We can
write a generic product state vector as |ψ⟩ = Πic

†
i |0⟩ and transform each of the creation operators individually, multiplying the

resulting expressions together at the end to obtain the transformed state. If the series of unitary transforms used to diagonalise the
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Hamiltonian has been stored, one can take any basis state (which are simply product states of zeros and ones in the diagonal basis)
and reverse the transform in order to construct any desired eigenstate in the original microscopic basis. The resulting expression is
likely to be quite complex, however, and it is unclear whether this procedure can be made of practical use.

Time evolution in the diagonal basis

In the basis where the Hamiltonian is diagonal, operators can be time-evolved using the Heisenberg equations of motion

dO
dt

= i[H̃, O]. (24)

This can again be handled on a term-by-term basis. For an operator O containing an odd number of fermionic operators, one
obtains the expression

[H̃, O] = [H̃
(2)
, O(1)] + [H̃

(2)
, O(3)] + [H̃

(4)
, O(1)] + [H̃

(4)
, O(3)] + . . . . (25)

While for an operator O containing an even number of fermionic operators, one obtains

[H̃, O] = [H̃
(2)
, O(2)] + [H̃

(4)
, O(2)] + [H̃

(2)
, O(4)] + [H̃

(4)
, O(4)] + . . . . (26)

Once the operator has been time-evolved, we can compute its expectation value with respect to any basis state, or mixture of
basis states. If the sequence of unitary transforms used to diagonalise the Hamiltonian has been stored, the transform can also be
reversed in order to obtain the time-evolved operator back in the original basis. This is useful if one wishes to study operator
spreading in real time, or compute the non-equilibrium dynamics starting from an initial state that is particularly simple in the
original basis, e.g., some form of unentangled state like a Néel state.

To be specific, we will be particularly interested in computing time-evolved number operators. The number operators take the
form

ni(t, l) =
∑
j

α
(i)
j (t, l) : ñj : +

∑
j ̸=k

β
(i)
jk (t, l) : c̃

†
j c̃k :

+
∑

i,j,k,q

Γijkq(t, l) : c̃
†
i c̃j c̃

†
k c̃q : +

∑
i,j,k,q,l,m

ζijkqlm(t, l) : c̃†i c̃j c̃
†
k c̃q c̃

†
l c̃m : + . . . . (27)

Higher order terms can be included, however, for the systems considered in this work they do not lead to any measurable difference
in the results, and so we do not include them here.

In all of the following, we drop the tilde notation for clarity, however, it is to be understood that from this point onwards, all
operators are defined in the diagonal (tilde) basis. The number operator can now be time evolved according to the Heisenberg
equation dni(t)/dt = i[H̃, ni(t)] and the contributions can be evaluated step-by-step. We could alternatively time-evolve the
creation/annihilation operators, allowing us to avoid having to store the sixth-order term in computer memory, at the cost of
having to perform a more complex series of summations when evaluating expectation values. The first contribution is given by the
quadratic components of both the Hamiltonian and the number operator

[H̃
(2)
, n

(2)
i ] =

∑
ijk

h̃kβij : [c
†
kck :, : c†i cj :] (28)

=
∑
ijk

h̃kβij(δik − δjk) : c
†
i cj : (29)

=
∑
ij

βij(hi − hj) : c
†
i cj : . (30)

This is the only contribution to the quadratic part of the number operator, and it can be integrated to obtain

n
(2)
i (t) =

∑
j

α
(i)
j : nj : +

∑
j ̸=k

β
(i)
jk (t) : c

†
i cj : (31)

with

β
(i)
jk (t) := exp(i(hj − hk)t)β

(i)
jk (0). (32)
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The first term is constant, as the terms that govern time evolution commute. There are two contributions to the quartic term.
The first involves the (diagonal) quartic Hamiltonian

[H̃
(4)
, n

(2)
i ] =

∑
i,j,k,q

∆ijβkq[: ninj :, : c
†
kcq :]

=
∑
ijk

∆ij : (βikc
†
i ck − βkic

†
kci)c

†
jcj : +

∑
ijk

∆ij : c
†
i ci(βjkc

†
jck − βkjc

†
kcj) : . (33)

The second involves the quadratic part of the Hamiltonian and the quartic part of the number operator as

[H̃
(2)
, n

(4)
i ] =

∑
ijkqm

h̃mΓijkq[: c
†
mcm :, : c†i cjc

†
kcq :]

=
∑
ijkq

(h̃i − h̃j + h̃k − h̃q)Γijkq : c†i cjc
†
kcq :, (34)

which together with the previous contribution implies

Γijkq(t) = exp[i(h̃i − h̃j + h̃k − h̃q)t]Γijkq(0) + δij
∆ik(βkq(t)− βkq(0))

h̃k − h̃q
+ δkq

∆ik(βij(t)− βij(0)

h̃i − h̃j
. (35)

Once the Hamiltonian is in diagonal form, one can also bound the error in the time evolution due to the imperfect diagonal
elements. To upper bound the error in β(i)

jk (t) = exp(i(hj − hk)t)β
(i)
jk (0): If the numbers {hj} are the approximations of the

exact {h′j} that are being used in the time evolution in the above Hamiltonian, then the error made can easily be upper bounded as
follows. With

δ := sup
j

|hj − h′j | (36)

being the largest element-wise error, one obtains∣∣∣(exp(i(h′j − h′k)t)− exp(i(hj − hk)t)
)
β
(i)
jk (0)

∣∣∣ =
∣∣∣(exp(i(h′j − h′k − hj + hk)t)− 1

)
exp(i(hj − hk)t)β

(i)
jk (0)

∣∣∣ (37)

≤
(h′j − h′k − hj + hk)

2t2

2
| exp(i(hj − hk)t)|β(i)

jk (0)

≤ 2δ2t2β
(i)
jk (0),

for all times t ≥ 0. One can proceed similarly for the quartic term in the fermionic operators.
In the very rare case of exact single-particle degeneracies, the [∆ik(βij(t)−βij(0))/(h̃i−h̃j)] and [∆ik(βkq(t)−βkq(0))/(h̃k−

h̃q)] terms are replaced by ∆ikβij(0)t and ∆ikβkq(0)t respectively. All higher-order terms can be evaluated similarly. As in the
calculation of the commutators used in the flow equations, these can be efficiently computed using the graphical notation. In this

work, we compute only the leading order phase shift applied to the sixth order terms coming from [H̃
(2)
, n

(6)
i ], which leads to

ζijkqlm(t) = exp[i(h̃i − h̃j + h̃k − h̃q + h̃l − h̃m)t]ζijkqlm(0). (38)

Sixth-order terms are not included for system sizes L > 36, as the memory cost becomes prohibitive, but the results for larger
system sizes are entirely consistent with the trends observed for smaller systems, demonstrating that these terms have only a
minor effect in all observed cases. With this done, we have computed the time-evolved number operator at some arbitrary time
t ≥ 0, without reference to any state, and without requiring step-by-step numerical evolution. Now we can move on and use this
to compute observables.

Computing the infinite-temperature correlation function

In previous works which have used flow equation techniques to compute the non-equilibrium dynamics of observables, the
procedure has typically involved transforming the desired operator into the diagonal basis (where time evolution becomes easier),
performing the time evolution, and then reversing the unitary transform to write the time-evolved operator back in the original
basis, where appropriate expectation values could then be computed. This process was cumbersome, as it involved two unitary
transforms (each with associated small but non-negligible numerical error), required storing the entire series of infinitesimal
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unitary transforms in memory, and the reverse transform had to be performed separately for each individual timestep. Altogether,
this led to time evolution using flow equation techniques to be extremely computationally demanding, limiting their use.

Here, we demonstrate that infinite-temperature expectation values may be computed using a much more efficient approach. The
thermal expectation value of any arbitrary operator O reflecting the Gibbs state is given by

⟨O⟩ = Tr[exp(−βH)O]/Tr[exp(−βH)], (39)

where β = 1/T is the inverse temperature (in units of kB = 1). In the infinite temperature limit, β → 0, both exponentials reduce
to the identity. In particular, the denominator simply becomes the trace of the identity, which gives the Hilbert space dimension,
and the infinite-temperature expectation value becomes

⟨O⟩ = 1

DH

DH∑
i=0

⟨ψi|O|ψi⟩ (40)

where the {|ψi⟩} are the basis state vectors. This is simply the mean value of the expectation value of the operator O taken over
the entire Hilbert space.

While there are elegant ways to approximate this using dynamical typicality (where the sum over states is replaced by the
expectation value in a single randomly chosen pure state), here we will take a simpler approach. We will replace the Hilbert space
size DH with a smaller integer Ns < DH , and approximate the mean value by

⟨O⟩ ≈ 1

Ns

Ns∑
i=0

⟨ψi|O|ψi⟩ (41)

For a sufficiently large value of Ns, this converges to the true value. In the following, we will choose Ns = min(DH , 512) and
restrict ourselves to the zero magnetization (half-filled) sector. We will work in the basis in which the Hamiltonian is diagonal,
and the basis vectors are simply given by all possible binary strings |0, 1, 0, . . .⟩. This allows us to avoid having to explicitly
compute all eigenstates in the initial microscopic basis, which would be exponentially costly in the system size. This can be done
by inserting the identity UU† = 1 like so

⟨O⟩ ≈ 1

Ns

Ns∑
i=0

⟨ψi|UU†OUU†|ψi⟩

=
1

Ns

Ns∑
i=0

⟨ψ̃i|Õ|ψ̃i⟩ (42)

reducing the problem to computing the transformed operator Õ = U†OU , and then computing its expectation value across Ns

product states.
In this work, we are interested in computing the infinite-temperature autocorrelation function, defined as

C(t) = 4⟨(ni(t)− 1/2)(ni(0)− 1/2)⟩ (43)

where the factor of 4 is chosen for convenience such that Ci(0) = 1, and where ni(t) is obtained as previously described. We shall
choose site i to be in the middle of the system in all the following so that we are far from the boundaries and finite-size effects
should be minimized. We will benchmark the performance of this approximation by comparison with exact diagonalization,
making use of dynamical quantum typicality [30–37] to efficiently compute the infinite temperature correlation function with
an error exponentially small in the Hilbert space dimension DH . In this case, the trace over basis states will be replaced by the
expectation value taken with respect to a single state vector

|ψ⟩ = C
∑
k

(ak + ibk) |ϕk⟩ , (44)

where C > 0 is a normalization constant, ak and bk are random real variables chosen from Gaussian distributions of zero mean
and variance 1/2. The state is chosen randomly for each disorder realization. This is essentially a way of approximating the trace
in Eq. (40) by uniformly randomly sampling contributions from all basis states,

⟨(: n(2)(t) : + : n(4) : (t))(: n(2)(0) : + : n(4)(0) :)⟩
= ⟨: n(2)(t) :: n(2)(0) :⟩+ ⟨: n(2)(t) :: n(4)(0) :⟩
+ ⟨: n(4)(t) :: n(2)(0) :⟩+ ⟨: n(4)(t) :: n(4)(0) :⟩. (45)
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We can address each of these terms individually. In computing these expectation values, we must remember that the fermionic
operators that we are using are normal-ordered with respect to the vacuum, purely to ensure a consistent ordering of operators is
used throughout the flow procedure. To straightforwardly take the expectation value with respect to an arbitrary state, we can
undo the : · · · : notation and write the operators in explicitly normal-ordered form. We could of course have done this at any stage
of the procedure, however, i) this formalism allows for more general normal-ordering procedures to be employed in future work,
and ii) writing everything explicitly in vacuum normal-ordered form introduces additional minus signs that need to be carefully
taken care of. We need the identities

: c†i cj : = c†i cj , (46)

: c†i cjc
†
kcq : = c†i cjc

†
kcq − δjkc

†
i cq = −c†i c†kcjcq, (47)

which are valid for vacuum normal-ordering and follow from the more general cases shown in Ref. [18]. For the quadratic terms,
this leads to

⟨: n(2)(t) :: n(2)(0) :⟩ =
∑
j,k

α
(i)
j α

(i)
k ⟨njnk⟩+

∑
j,k,l,m

β
(i)
j,k(t)β

(i)
lm(0)⟨c†jckc†l cm⟩⟩. (48)

Each of the expectation values can be computed by the application of Wick’s theorem to determine which contractions are
non-zero, keeping careful track of the minus signs that arise when swapping the order of operators. As we are taking expectation
values with respect to a product state, this leads to

⟨: n(2)(t) :: n(2)(0) :⟩ =
∑
j,k

α
(i)
j α

(i)
j ⟨nj⟩⟨nk⟩+

∑
j,k

β
(i)
jk (t)β

(i)
kj (0)⟨nj⟩(1− ⟨nk⟩). (49)

For the higher-order terms, we proceed as

⟨: n(2)(t) :: n(4)(0) :⟩ = −
∑

j,p,q,l,m

α
(i)
j Γpqlm(0)⟨c†jcjc†pc†l cqcm⟩ −

∑
j,k,p,q,l,m

β
(i)
jk (t)Γpqlm(0)⟨c†jckc†pc†l cqcm⟩. (50)

For convenience, we can rearrange the operators, to give

⟨c†jckc†pc†l cqcm⟩ = δkp⟨c†jc†l cqcm⟩ − ⟨c†jc†pckc†l cqcm⟩
= δkp⟨c†jc†l cqcm⟩ − δlk⟨c†jc†pcqcm⟩+ ⟨c†jc†pc†l ckcqcm⟩. (51)

This allows us to extract the lower-order contributions immediately, and now we only need to worry about the Wick contractions
at each order. For example, the contractions for the quartic term give

⟨c†jc†l cqcm⟩ = ⟨c†jc†l cqcm⟩+ ⟨c†jc†l cqcm⟩
= ⟨c†jcm⟩⟨c†l cq⟩ − ⟨c†jcq⟩⟨c†l cm⟩
= δjmδlq⟨nj⟩⟨nq⟩ − δj,qδlm⟨nj⟩⟨nl⟩. (52)

Similarly, the other sixth-order term gives

⟨: n(2)(t) :: n(4)(0) :⟩ = −
∑

j,p,q,l,m

α
(i)
j Γpqlm(t)⟨c†pc†l cqcmc

†
jcj⟩ −

∑
j,k,p,q,l,m

β
(i)
jk (0)Γpqlm(t)⟨c†pc†l cqcmc

†
jck⟩. (53)

The operators can be rearranged in a similar way,

⟨c†pc†l cqcmc
†
jck⟩ = δmj⟨c†pc†l cqck⟩ − ⟨c†pc†l cqc

†
jcmck⟩

= δmj⟨c†pc†l cqck⟩ − δj,q⟨c†pc†l cmck⟩+ ⟨c†pc†l c
†
jcqcmck⟩ (54)

and the Wick contractions computed as above. Finally, the eighth-order term can be written as

⟨: n(4)(t) :: n(4)(0) :⟩ =
∑

i1,...,i8

Γi1i2i3i4(t)Γi5i6i7i8⟨c†i1c
†
i3
ci2ci4c

†
i5
c†i7ci6ci8⟩, (55)

which can likewise be rearranged into explicitly vacuum normal-ordered form and the expectation value computed by Wick’s
theorem. For small system sizes, the products of quadratic and sixth-order terms is also included in the numerics, but we do not
go into further details here as they follow the same pattern as the previous terms. Once we have all of these contributions, the
expectation values in each state can be calculated and the sum in Eq. (42) computed.
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