1.4 KiB
1.4 KiB
16^{54} \ mod \ 17=3^{24×54} \ mod \ 17
Why?
Public Key Cryptography: Diffie-Hellman Key Exchange (short version) - YouTube is a good video to understand asymmetric cryptography. There is a jump from 4:34 in the video that is not obvious to everyone.
The jump is from 1654mod17 to 324×54mod17, but why? From the comments of video, I’m not the only one who is supprised by this jump.
First let me introduce a formula:
a^b\ mod \ p=((a \ mod \ p)^b) \ mod \ p \ \ \ \ (1)
Then the proof:
There must be one integer n
to have
a \ mod \ p=a−np \ \ \ \ (2)
so
((a \ mod \ p)^b) \ mod \ p=((a−np)^b) \ mod \ p
With Binomial theorem - Wikipedia,
(a−np)b=ab+(b1)ab−1(−np)+(b2)ab−2(−np)2+...+(−np)b
We could see that all items are times of p
except a^b
,
((a−np)bmodp)=(ab+(b1)ab−1(−np)+(b2)ab−2(−np)2+...+(−np)b)modp=abmodp+0+0+...+0
Now we got
((a−np)^b \ mod \ p)=a^b \ mod \ p
Use formula (2)
((amodp)b)modp=abmodp
Now let a as 3^{24}
, and b as 54 in formula (1):
\\
\\begin{align}
3^{24×54}\ mod \ 17=((3^{24})^{54}) \ mod \ 17 \\ \\&= ((3^{24} \ mod \17)^{54})mod 17
\end{align}
= 16^{54}mod17$$
via [BrookHongs github](https://brookhong.github.io/2018/05/22/proof-of-a-formula-for-modulo.html)