3.6 KiB
3.6 KiB
Julia is another high-performance fast programming language that could be great for future quantum programmers as an option to code in. There are several resources available online for learning quantum through julia as well.
- Error correction also exists for the Julia program - HOQST which is mainly an annealing tool but with the recent Nature paper proves that it may be better than qiskit pulse One great source is this article that explains how to build a quantum circuit simulator in one day!
using LinearAlgebra
function naive_broutine!(r::AbstractVector, U::AbstractMatrix, loc::Int)
n = Int(log2(length(r))) # get the number of qubits
return kron(I(1<<(n-loc+1)), U), I(1<<loc)
end
log2i(x::Int64) = !signbit(x) ? (63 - leading_zeros(x)) : throw(ErrorException("nonnegative expected ($x)"))
log2i(x::UInt64) = 63 - leading_zeros(x)
for N in [8, 16, 32, 64, 128]
T = Symbol(:Int, N)
UT = Symbol(:UInt, N)
@eval begin
log2i(x::$T) =
!signbit(x) ? ($(N - 1) - leading_zeros(x)) :
throw(ErrorException("nonnegative expected ($x)"))
log2i(x::$UT) = $(N - 1) - leading_zeros(x)
end
end
function broutine!(r::AbstractVector, U::AbstractMatrix, locs::NTuple{N, Int}) where N
end
function bmask(itr)
isempty(itr) && return 0
ret = 0
for b in itr
ret += 1 << (b - 1)
end
return ret
end
function bmask(range::UnitRange{Int})
((1 << (range.stop - range.start + 1)) - 1) << (range.start - 1)
end
function bmask(::Type{T}, itr) where {T<:Integer}
isempty(itr) && return 0
ret = zero(T)
for b in itr
ret += one(T) << (b - 1)
end
return ret
end
function bmask(::Type{T}, range::UnitRange{Int})::T where {T<:Integer}
((one(T) << (range.stop - range.start + 1)) - one(T)) << (range.start - 1)
end
bmask(args...) = bmask(Int, args...)
# this is for removing the infinity call of the later function
bmask(::Type{T}) where {T<:Integer} = zero(T)
bmask(::Type{T}, positions::Int...) where {T<:Integer} = bmask(T, positions)
bmask(args...) = bmask(Int, args...)
bmask(::Type{T}) where {T<:Integer} = zero(T)
bmask(::Type{T}, positions::Int...) where {T<:Integer} = bmask(T, positions)
function bmask(::Type{T}, itr) where {T<:Integer}
isempty(itr) && return 0
ret = zero(T)
for b in itr
ret += one(T) << (b - 1)
end
return ret
end
function bmask(::Type{T}, range::UnitRange{Int})::T where {T<:Integer}
((one(T) << (range.stop - range.start + 1)) - one(T)) << (range.start - 1)
end
(xxx & ~0b001) << 1 + (xxx & 0b001) # = xx00x
@inline lmove(b::Int, mask::Int, k::Int)::Int = (b & ~mask) << k + (b & mask)
function group_shift(locations)
masks = Int[]
region_lens = Int[]
k_prv = -1
for k in locations
# if current position in the contiguous region
# since these bits will be moved together with
# the first one, we don't need to generate a
# new mask
if k == k_prv + 1
region_lens[end] += 1
else
# we generate a bit mask where the 1st to k-th bits are 1
push!(masks, bmask(0:k-1))
push!(region_lens, 1)
end
k_prv = k
end
return masks, region_lens
end
- An interesting package written in Julia on Quantum Walks
- was utilized in Impact of the malicious input data modification on the efficiency of quantum algorithms, DOI:10.1007/s11128-019-2459-3, arXiv:1802.10041 (2018).