Upload New File

main
Shwetha Jayaraj 2023-03-27 05:04:25 +00:00
parent 3afcee1641
commit c16d9af03c
1 changed files with 790 additions and 0 deletions

View File

@ -0,0 +1,790 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"collapsed_sections": [
"mHWrVJUPzYFs",
"IyXkr5MpzbJd",
"rS8hWZHmMDaO",
"4vgFHWWjMQKU",
"nrRWFItmN1Wb",
"5bYirnBUVT-m",
"vcf7RP_pXJjh",
"du4fBz_r8B1Q",
"n-OmBy6v8o-c",
"Njl7VwbWQczf"
]
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# Concepts Review #1: Quantum Gates\n",
"---\n",
"This concept review notebook will go over Quantum Gates. Gates are matrix operations that we utilize in circuit diagrams in order to perform transformations on our qubits. \n",
"\n",
"<br> \n",
"\n",
"You can find the syntax cheat sheet [here](https://).\n",
"\n",
"<br> \n",
"Start by importing the standard libraries as discussed in the previous review notebook. "
],
"metadata": {
"id": "ExUXGU-CzEXO"
}
},
{
"cell_type": "code",
"source": [
"# uncomment below if qiskit not already installed \n",
"#!pip install qiskit \n",
"# Importing standard Qiskit libraries\n",
"from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister \n",
"#Importing the QuantumCircuit function from Qiskit. \n",
"#We will use this to create our quantum circuits!\n",
"\n",
"# We will use these functions to run our circuit and visualize its final state\n",
"from qiskit import Aer, execute \n",
"from qiskit.visualization import *\n"
],
"metadata": {
"id": "h4GiblBAQrGA"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"---\n",
"\n",
"#### **Exercise #1:** Can you implement a quantum circuit? \n",
"\n",
"in trivial cases, you may either pass numbers into the `QuantumCircuit` class or, for more later complex cases where a classical register is needed, a `QuantumRegister` class may need to be implemented. Try your hand at both in this exercise. \n",
"\n"
],
"metadata": {
"id": "NdYNfWiTzQic"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "H94JrByizCgt"
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"source": [
"**Hint:** Click [here](https://qiskit.org/textbook/ch-appendix/qiskit.html) for syntax.\n",
"\n",
"\n",
"\n"
],
"metadata": {
"id": "CFfXSA9_Kcko"
}
},
{
"cell_type": "markdown",
"source": [
"##### **Solution 1:**"
],
"metadata": {
"id": "I1evfkmzzZWG"
}
},
{
"cell_type": "code",
"source": [
"#q = QuantumRegister(1)\n",
"qc = QuantumCircuit(2) #or numbers\n",
"qc.draw()"
],
"metadata": {
"id": "ELpjbEsrzZ9v",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 94
},
"outputId": "bba13886-d142-4c04-9ba5-f55af7eba59f"
},
"execution_count": 8,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" \n",
"q_0: \n",
" \n",
"q_1: \n",
" "
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> \n",
"q_0: \n",
" \n",
"q_1: \n",
" </pre>"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "rACZ2OkVQrCj"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #2:** Can you implement an X or NOT gate? \n",
"This `qc.x` is also known as the **bit flip gate** as it simply flips the bit directly from a 1 or a 0 (when starting out with a 0 or 1 respectively) as one would in a classical bit. "
],
"metadata": {
"id": "mHWrVJUPzYFs"
}
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "ioUQK4pBUoLW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"##### **Solution 2:**"
],
"metadata": {
"id": "Hwi4DpuLzca-"
}
},
{
"cell_type": "code",
"source": [
"qc = QuantumCircuit(q)\n",
"qc.x(q)\n",
"qc.draw()"
],
"metadata": {
"id": "zTm07sADvy8M",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 63
},
"outputId": "914bea06-d85f-4c08-b6d1-75ace77484cc"
},
"execution_count": 9,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ┌───┐\n",
"q3: ┤ X ├\n",
" └───┘"
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> ┌───┐\n",
"q3: ┤ X ├\n",
" └───┘</pre>"
]
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #3:** Can you implement the Y Gate? \n",
"This `qc.y` also known as the **bit and phase flip gate** as it flips the bit directly from a 1 or a 0 (when starting out with a 0 or 1 respectively) as well as its *phase*."
],
"metadata": {
"id": "IyXkr5MpzbJd"
}
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "u14wW7JnzdA_"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"##### **Solution:**"
],
"metadata": {
"id": "uNrHhp9yzVUV"
}
},
{
"cell_type": "code",
"source": [
"qc = QuantumCircuit(q)\n",
"qc.y(q)\n",
"qc.draw()"
],
"metadata": {
"id": "UlGm2XBDzctN",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 63
},
"outputId": "bb1da7e0-95b0-4485-a3bd-064579231e11"
},
"execution_count": 10,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ┌───┐\n",
"q3: ┤ Y ├\n",
" └───┘"
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> ┌───┐\n",
"q3: ┤ Y ├\n",
" └───┘</pre>"
]
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #4:** Can you implement the H Gate? \n",
"Now we are getting into quantum gates! This `qc.h` is also known as the **Hadamard gate** as it puts our qubits into superposition."
],
"metadata": {
"id": "rS8hWZHmMDaO"
}
},
{
"cell_type": "code",
"source": [
"qc = QuantumCircuit(q)\n",
"qc.h(q)\n",
"qc.draw()"
],
"metadata": {
"id": "a3whVGh_MDaO",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 63
},
"outputId": "27ebb463-f509-4dd2-e32e-f2861baa1a3e"
},
"execution_count": 11,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ┌───┐\n",
"q3: ┤ H ├\n",
" └───┘"
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> ┌───┐\n",
"q3: ┤ H ├\n",
" └───┘</pre>"
]
},
"metadata": {},
"execution_count": 11
}
]
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #5:** Can you implement the Z Gate? \n",
"This `qc.z` is also known as the **Phase flip gate** as it simply flips the qubit's phase by π around the bloch sphere."
],
"metadata": {
"id": "4vgFHWWjMQKU"
}
},
{
"cell_type": "code",
"source": [
"qc = QuantumCircuit(q)\n",
"qc.z(q)\n",
"qc.draw()"
],
"metadata": {
"id": "Se3CetU1MQKV",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 63
},
"outputId": "5c559936-9e6e-41b9-9947-7c038aa8d10e"
},
"execution_count": 13,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ┌───┐\n",
"q3: ┤ Z ├\n",
" └───┘"
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> ┌───┐\n",
"q3: ┤ Z ├\n",
" └───┘</pre>"
]
},
"metadata": {},
"execution_count": 13
}
]
},
{
"cell_type": "markdown",
"source": [
"**Hint:** Click [here](https://quantum-computing.ibm.com/lab) for a refresher on π rotations.\n"
],
"metadata": {
"id": "-XxNcdOWNeud"
}
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #6:** Can you implement the CNOT Gate? \n",
"This `qc.cx` is also known as the **controlled not gate** which we use to entangle qubits. It acts on 2 qubits to \"control\" one qubit while making the other qubit the \"target\" qubit. "
],
"metadata": {
"id": "nrRWFItmN1Wb"
}
},
{
"cell_type": "code",
"source": [
"q = QuantumRegister(3)\n",
"qc = QuantumCircuit(q) #or use numbers\n",
"qc.cx(q[0], q[1])\n",
"qc.draw()"
],
"metadata": {
"id": "BabTrvcqN1Wq",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 125
},
"outputId": "d341a6d4-c8f3-4233-ae49-17b4c651daad"
},
"execution_count": 22,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" \n",
"q8_0: ──■──\n",
" ┌─┴─┐\n",
"q8_1: ┤ X ├\n",
" └───┘\n",
"q8_2: ─────\n",
" "
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> \n",
"q8_0: ──■──\n",
" ┌─┴─┐\n",
"q8_1: ┤ X ├\n",
" └───┘\n",
"q8_2: ─────\n",
" </pre>"
]
},
"metadata": {},
"execution_count": 22
}
]
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #7:** Can you implement the `measure` function? \n",
"This `qc.measure` is used to measure a certain qubit to collapse it into the classical register within the circuit. "
],
"metadata": {
"id": "5bYirnBUVT-m"
}
},
{
"cell_type": "code",
"source": [
"q = QuantumRegister(3)\n",
"c = ClassicalRegister(3)\n",
"qc = QuantumCircuit(q,c) #or use numbers\n",
"qc.measure(q,c)\n",
"qc.draw()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 156
},
"outputId": "d680e4aa-1884-4647-81fd-6933d9f3ebe4",
"id": "f0Eg_G4mVT-4"
},
"execution_count": 28,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ┌─┐ \n",
"q14_0: ┤M├──────\n",
" └╥┘┌─┐ \n",
"q14_1: ─╫─┤M├───\n",
" ║ └╥┘┌─┐\n",
"q14_2: ─╫──╫─┤M├\n",
" ║ ║ └╥┘\n",
" c2: 3/═╩══╩══╩═\n",
" 0 1 2 "
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> ┌─┐ \n",
"q14_0: ┤M├──────\n",
" └╥┘┌─┐ \n",
"q14_1: ─╫─┤M├───\n",
" ║ └╥┘┌─┐\n",
"q14_2: ─╫──╫─┤M├\n",
" ║ ║ └╥┘\n",
" c2: 3/═╩══╩══╩═\n",
" 0 1 2 </pre>"
]
},
"metadata": {},
"execution_count": 28
}
]
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #8:** Can you construct a simple Bell State circuit? \n",
"Recall the gate operations we used in the course to create a Bell State circuit. The above operations will be all that is necessary to do so!"
],
"metadata": {
"id": "vcf7RP_pXJjh"
}
},
{
"cell_type": "code",
"source": [
"qr = QuantumRegister(2)\n",
"cr = ClassicalRegister(2)\n",
"qc = QuantumCircuit(qr,cr) #or use numbers\n",
"qc.h(qr[0])\n",
"qc.cx(qr[0], qr[1])\n",
"qc.measure((qr[0], qr[1]), (cr[0], cr[1]))\n",
"\n",
"qc.draw()\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 125
},
"outputId": "f7e2cfb4-f199-476b-99cf-fdb8577f1ea1",
"id": "yVXxmVr8XJju"
},
"execution_count": 33,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ┌───┐ ┌─┐ \n",
"q19_0: ┤ H ├──■──┤M├───\n",
" └───┘┌─┴─┐└╥┘┌─┐\n",
"q19_1: ─────┤ X ├─╫─┤M├\n",
" └───┘ ║ └╥┘\n",
" c7: 2/═══════════╩══╩═\n",
" 0 1 "
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> ┌───┐ ┌─┐ \n",
"q19_0: ┤ H ├──■──┤M├───\n",
" └───┘┌─┴─┐└╥┘┌─┐\n",
"q19_1: ─────┤ X ├─╫─┤M├\n",
" └───┘ ║ └╥┘\n",
" c7: 2/═══════════╩══╩═\n",
" 0 1 </pre>"
]
},
"metadata": {},
"execution_count": 33
}
]
},
{
"cell_type": "markdown",
"source": [
"\n",
"\n",
"---\n",
"\n"
],
"metadata": {
"id": "WaHlX89nvtX3"
}
},
{
"cell_type": "markdown",
"source": [
"### **Optional - Additional Practice**\n",
"If you would like additional practice, try the problems below. The problems are optional gates content for more interesting operations with quantum gates. "
],
"metadata": {
"id": "du4fBz_r8B1Q"
}
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #1:** \n",
"Construct a 4-qubit Bernstein-Vazarani circuit using registers. "
],
"metadata": {
"id": "n-OmBy6v8o-c"
}
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "MkCl10I-Qczr"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"##### **Solution:**"
],
"metadata": {
"id": "8E1BERSa8-mG"
}
},
{
"cell_type": "code",
"source": [
"qr = QuantumRegister(3, 'q')\n",
"anc = QuantumRegister(1, 'ancilla')\n",
"cr = ClassicalRegister(3, 'c')\n",
"qc = QuantumCircuit(qr, anc, cr)\n",
"\n",
"qc.x(anc[0])\n",
"qc.h(anc[0])\n",
"qc.h(qr[0:3])\n",
"qc.cx(qr[0:3], anc[0])\n",
"qc.h(qr[0:3])\n",
"qc.barrier(qr)\n",
"qc.measure(qr, cr)\n",
"\n",
"qc.draw()"
],
"metadata": {
"id": "vAbVa-0S8-Oa",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 186
},
"outputId": "7ce6f16b-fde5-49fa-dd47-dbce2fc161bf"
},
"execution_count": 35,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ┌───┐ ┌───┐ ░ ┌─┐ \n",
" q_0: ┤ H ├───────■──┤ H ├───────────░─┤M├──────\n",
" ├───┤ │ └───┘┌───┐ ░ └╥┘┌─┐ \n",
" q_1: ┤ H ├───────┼────■──┤ H ├──────░──╫─┤M├───\n",
" ├───┤ │ │ └───┘┌───┐ ░ ║ └╥┘┌─┐\n",
" q_2: ┤ H ├───────┼────┼────■──┤ H ├─░──╫──╫─┤M├\n",
" ├───┤┌───┐┌─┴─┐┌─┴─┐┌─┴─┐└───┘ ░ ║ ║ └╥┘\n",
"ancilla: ┤ X ├┤ H ├┤ X ├┤ X ├┤ X ├─────────╫──╫──╫─\n",
" └───┘└───┘└───┘└───┘└───┘ ║ ║ ║ \n",
" c: 3/══════════════════════════════════╩══╩══╩═\n",
" 0 1 2 "
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> ┌───┐ ┌───┐ ░ ┌─┐ \n",
" q_0: ┤ H ├───────■──┤ H ├───────────░─┤M├──────\n",
" ├───┤ │ └───┘┌───┐ ░ └╥┘┌─┐ \n",
" q_1: ┤ H ├───────┼────■──┤ H ├──────░──╫─┤M├───\n",
" ├───┤ │ │ └───┘┌───┐ ░ ║ └╥┘┌─┐\n",
" q_2: ┤ H ├───────┼────┼────■──┤ H ├─░──╫──╫─┤M├\n",
" ├───┤┌───┐┌─┴─┐┌─┴─┐┌─┴─┐└───┘ ░ ║ ║ └╥┘\n",
"ancilla: ┤ X ├┤ H ├┤ X ├┤ X ├┤ X ├─────────╫──╫──╫─\n",
" └───┘└───┘└───┘└───┘└───┘ ║ ║ ║ \n",
" c: 3/══════════════════════════════════╩══╩══╩═\n",
" 0 1 2 </pre>"
]
},
"metadata": {},
"execution_count": 35
}
]
},
{
"cell_type": "markdown",
"source": [
"#### **Exercise #2:** \n",
"Construct a 5-qubit GHZ circuit. "
],
"metadata": {
"id": "Njl7VwbWQczf"
}
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "Drq5EUuRasi_"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"\n",
"##### **Solution:**"
],
"metadata": {
"id": "04L4_ffhREw2"
}
},
{
"cell_type": "code",
"source": [
"qc = QuantumCircuit(5)\n",
"qc.h(0)\n",
"qc.cx(0, range(1, 5))\n",
"qc.measure_all()\n",
"qc.draw()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 217
},
"id": "VyDFL6UKaYk5",
"outputId": "b86aedab-9c26-472e-e931-f430f5ec94f8"
},
"execution_count": 37,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ┌───┐ ░ ┌─┐ \n",
" q_0: ┤ H ├──■────■────■────■───░─┤M├────────────\n",
" └───┘┌─┴─┐ │ │ │ ░ └╥┘┌─┐ \n",
" q_1: ─────┤ X ├──┼────┼────┼───░──╫─┤M├─────────\n",
" └───┘┌─┴─┐ │ │ ░ ║ └╥┘┌─┐ \n",
" q_2: ──────────┤ X ├──┼────┼───░──╫──╫─┤M├──────\n",
" └───┘┌─┴─┐ │ ░ ║ ║ └╥┘┌─┐ \n",
" q_3: ───────────────┤ X ├──┼───░──╫──╫──╫─┤M├───\n",
" └───┘┌─┴─┐ ░ ║ ║ ║ └╥┘┌─┐\n",
" q_4: ────────────────────┤ X ├─░──╫──╫──╫──╫─┤M├\n",
" └───┘ ░ ║ ║ ║ ║ └╥┘\n",
"meas: 5/═════════════════════════════╩══╩══╩══╩══╩═\n",
" 0 1 2 3 4 "
],
"text/html": [
"<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: &quot;Courier New&quot;,Courier,monospace\"> ┌───┐ ░ ┌─┐ \n",
" q_0: ┤ H ├──■────■────■────■───░─┤M├────────────\n",
" └───┘┌─┴─┐ │ │ │ ░ └╥┘┌─┐ \n",
" q_1: ─────┤ X ├──┼────┼────┼───░──╫─┤M├─────────\n",
" └───┘┌─┴─┐ │ │ ░ ║ └╥┘┌─┐ \n",
" q_2: ──────────┤ X ├──┼────┼───░──╫──╫─┤M├──────\n",
" └───┘┌─┴─┐ │ ░ ║ ║ └╥┘┌─┐ \n",
" q_3: ───────────────┤ X ├──┼───░──╫──╫──╫─┤M├───\n",
" └───┘┌─┴─┐ ░ ║ ║ ║ └╥┘┌─┐\n",
" q_4: ────────────────────┤ X ├─░──╫──╫──╫──╫─┤M├\n",
" └───┘ ░ ║ ║ ║ ║ └╥┘\n",
"meas: 5/═════════════════════════════╩══╩══╩══╩══╩═\n",
" 0 1 2 3 4 </pre>"
]
},
"metadata": {},
"execution_count": 37
}
]
},
{
"cell_type": "markdown",
"source": [
"---\n",
"\n",
"### **Conclusion:** \n",
"\n",
"This concludes the Quantum Gates concept review. "
],
"metadata": {
"id": "biqjpjaGbD5A"
}
},
{
"cell_type": "markdown",
"source": [
"---\n",
"Author: Shwetha Jayaraj\n",
"<br> \n",
"© 2023 Qubit by Qubit, The Coding School. All rights reserved\n",
"\n"
],
"metadata": {
"id": "-V-QseQFze5o"
}
}
]
}