diff --git a/Quantum Realm/Tools/Computer choices/IBM/Qiskit Concepts Review/ConceptsReview1_Gates.ipynb b/Quantum Realm/Tools/Computer choices/IBM/Qiskit Concepts Review/ConceptsReview1_Gates.ipynb
new file mode 100644
index 0000000..6d49dd1
--- /dev/null
+++ b/Quantum Realm/Tools/Computer choices/IBM/Qiskit Concepts Review/ConceptsReview1_Gates.ipynb
@@ -0,0 +1,790 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": [],
+ "collapsed_sections": [
+ "mHWrVJUPzYFs",
+ "IyXkr5MpzbJd",
+ "rS8hWZHmMDaO",
+ "4vgFHWWjMQKU",
+ "nrRWFItmN1Wb",
+ "5bYirnBUVT-m",
+ "vcf7RP_pXJjh",
+ "du4fBz_r8B1Q",
+ "n-OmBy6v8o-c",
+ "Njl7VwbWQczf"
+ ]
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Concepts Review #1: Quantum Gates\n",
+ "---\n",
+ "This concept review notebook will go over Quantum Gates. Gates are matrix operations that we utilize in circuit diagrams in order to perform transformations on our qubits. \n",
+ "\n",
+ "
\n",
+ "\n",
+ "You can find the syntax cheat sheet [here](https://).\n",
+ "\n",
+ "
\n",
+ "Start by importing the standard libraries as discussed in the previous review notebook. "
+ ],
+ "metadata": {
+ "id": "ExUXGU-CzEXO"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# uncomment below if qiskit not already installed \n",
+ "#!pip install qiskit \n",
+ "# Importing standard Qiskit libraries\n",
+ "from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister \n",
+ "#Importing the QuantumCircuit function from Qiskit. \n",
+ "#We will use this to create our quantum circuits!\n",
+ "\n",
+ "# We will use these functions to run our circuit and visualize its final state\n",
+ "from qiskit import Aer, execute \n",
+ "from qiskit.visualization import *\n"
+ ],
+ "metadata": {
+ "id": "h4GiblBAQrGA"
+ },
+ "execution_count": 2,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "---\n",
+ "\n",
+ "#### **Exercise #1:** Can you implement a quantum circuit? \n",
+ "\n",
+ "in trivial cases, you may either pass numbers into the `QuantumCircuit` class or, for more later complex cases where a classical register is needed, a `QuantumRegister` class may need to be implemented. Try your hand at both in this exercise. \n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "NdYNfWiTzQic"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "H94JrByizCgt"
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Hint:** Click [here](https://qiskit.org/textbook/ch-appendix/qiskit.html) for syntax.\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "CFfXSA9_Kcko"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "##### **Solution 1:**"
+ ],
+ "metadata": {
+ "id": "I1evfkmzzZWG"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#q = QuantumRegister(1)\n",
+ "qc = QuantumCircuit(2) #or numbers\n",
+ "qc.draw()"
+ ],
+ "metadata": {
+ "id": "ELpjbEsrzZ9v",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 94
+ },
+ "outputId": "bba13886-d142-4c04-9ba5-f55af7eba59f"
+ },
+ "execution_count": 8,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " \n",
+ "q_0: \n",
+ " \n",
+ "q_1: \n",
+ " "
+ ],
+ "text/html": [
+ "
\n", + "q_0: \n", + " \n", + "q_1: \n", + "" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "rACZ2OkVQrCj" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #2:** Can you implement an X or NOT gate? \n", + "This `qc.x` is also known as the **bit flip gate** as it simply flips the bit directly from a 1 or a 0 (when starting out with a 0 or 1 respectively) as one would in a classical bit. " + ], + "metadata": { + "id": "mHWrVJUPzYFs" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "ioUQK4pBUoLW" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "##### **Solution 2:**" + ], + "metadata": { + "id": "Hwi4DpuLzca-" + } + }, + { + "cell_type": "code", + "source": [ + "qc = QuantumCircuit(q)\n", + "qc.x(q)\n", + "qc.draw()" + ], + "metadata": { + "id": "zTm07sADvy8M", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 63 + }, + "outputId": "914bea06-d85f-4c08-b6d1-75ace77484cc" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ┌───┐\n", + "q3: ┤ X ├\n", + " └───┘" + ], + "text/html": [ + "
┌───┐\n", + "q3: ┤ X ├\n", + " └───┘" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #3:** Can you implement the Y Gate? \n", + "This `qc.y` also known as the **bit and phase flip gate** as it flips the bit directly from a 1 or a 0 (when starting out with a 0 or 1 respectively) as well as its *phase*." + ], + "metadata": { + "id": "IyXkr5MpzbJd" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "u14wW7JnzdA_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "##### **Solution:**" + ], + "metadata": { + "id": "uNrHhp9yzVUV" + } + }, + { + "cell_type": "code", + "source": [ + "qc = QuantumCircuit(q)\n", + "qc.y(q)\n", + "qc.draw()" + ], + "metadata": { + "id": "UlGm2XBDzctN", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 63 + }, + "outputId": "bb1da7e0-95b0-4485-a3bd-064579231e11" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ┌───┐\n", + "q3: ┤ Y ├\n", + " └───┘" + ], + "text/html": [ + "
┌───┐\n", + "q3: ┤ Y ├\n", + " └───┘" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #4:** Can you implement the H Gate? \n", + "Now we are getting into quantum gates! This `qc.h` is also known as the **Hadamard gate** as it puts our qubits into superposition." + ], + "metadata": { + "id": "rS8hWZHmMDaO" + } + }, + { + "cell_type": "code", + "source": [ + "qc = QuantumCircuit(q)\n", + "qc.h(q)\n", + "qc.draw()" + ], + "metadata": { + "id": "a3whVGh_MDaO", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 63 + }, + "outputId": "27ebb463-f509-4dd2-e32e-f2861baa1a3e" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ┌───┐\n", + "q3: ┤ H ├\n", + " └───┘" + ], + "text/html": [ + "
┌───┐\n", + "q3: ┤ H ├\n", + " └───┘" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #5:** Can you implement the Z Gate? \n", + "This `qc.z` is also known as the **Phase flip gate** as it simply flips the qubit's phase by π around the bloch sphere." + ], + "metadata": { + "id": "4vgFHWWjMQKU" + } + }, + { + "cell_type": "code", + "source": [ + "qc = QuantumCircuit(q)\n", + "qc.z(q)\n", + "qc.draw()" + ], + "metadata": { + "id": "Se3CetU1MQKV", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 63 + }, + "outputId": "5c559936-9e6e-41b9-9947-7c038aa8d10e" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ┌───┐\n", + "q3: ┤ Z ├\n", + " └───┘" + ], + "text/html": [ + "
┌───┐\n", + "q3: ┤ Z ├\n", + " └───┘" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Hint:** Click [here](https://quantum-computing.ibm.com/lab) for a refresher on π rotations.\n" + ], + "metadata": { + "id": "-XxNcdOWNeud" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #6:** Can you implement the CNOT Gate? \n", + "This `qc.cx` is also known as the **controlled not gate** which we use to entangle qubits. It acts on 2 qubits to \"control\" one qubit while making the other qubit the \"target\" qubit. " + ], + "metadata": { + "id": "nrRWFItmN1Wb" + } + }, + { + "cell_type": "code", + "source": [ + "q = QuantumRegister(3)\n", + "qc = QuantumCircuit(q) #or use numbers\n", + "qc.cx(q[0], q[1])\n", + "qc.draw()" + ], + "metadata": { + "id": "BabTrvcqN1Wq", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 125 + }, + "outputId": "d341a6d4-c8f3-4233-ae49-17b4c651daad" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " \n", + "q8_0: ──■──\n", + " ┌─┴─┐\n", + "q8_1: ┤ X ├\n", + " └───┘\n", + "q8_2: ─────\n", + " " + ], + "text/html": [ + "
\n", + "q8_0: ──■──\n", + " ┌─┴─┐\n", + "q8_1: ┤ X ├\n", + " └───┘\n", + "q8_2: ─────\n", + "" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #7:** Can you implement the `measure` function? \n", + "This `qc.measure` is used to measure a certain qubit to collapse it into the classical register within the circuit. " + ], + "metadata": { + "id": "5bYirnBUVT-m" + } + }, + { + "cell_type": "code", + "source": [ + "q = QuantumRegister(3)\n", + "c = ClassicalRegister(3)\n", + "qc = QuantumCircuit(q,c) #or use numbers\n", + "qc.measure(q,c)\n", + "qc.draw()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 156 + }, + "outputId": "d680e4aa-1884-4647-81fd-6933d9f3ebe4", + "id": "f0Eg_G4mVT-4" + }, + "execution_count": 28, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ┌─┐ \n", + "q14_0: ┤M├──────\n", + " └╥┘┌─┐ \n", + "q14_1: ─╫─┤M├───\n", + " ║ └╥┘┌─┐\n", + "q14_2: ─╫──╫─┤M├\n", + " ║ ║ └╥┘\n", + " c2: 3/═╩══╩══╩═\n", + " 0 1 2 " + ], + "text/html": [ + "
┌─┐ \n", + "q14_0: ┤M├──────\n", + " └╥┘┌─┐ \n", + "q14_1: ─╫─┤M├───\n", + " ║ └╥┘┌─┐\n", + "q14_2: ─╫──╫─┤M├\n", + " ║ ║ └╥┘\n", + " c2: 3/═╩══╩══╩═\n", + " 0 1 2" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #8:** Can you construct a simple Bell State circuit? \n", + "Recall the gate operations we used in the course to create a Bell State circuit. The above operations will be all that is necessary to do so!" + ], + "metadata": { + "id": "vcf7RP_pXJjh" + } + }, + { + "cell_type": "code", + "source": [ + "qr = QuantumRegister(2)\n", + "cr = ClassicalRegister(2)\n", + "qc = QuantumCircuit(qr,cr) #or use numbers\n", + "qc.h(qr[0])\n", + "qc.cx(qr[0], qr[1])\n", + "qc.measure((qr[0], qr[1]), (cr[0], cr[1]))\n", + "\n", + "qc.draw()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 125 + }, + "outputId": "f7e2cfb4-f199-476b-99cf-fdb8577f1ea1", + "id": "yVXxmVr8XJju" + }, + "execution_count": 33, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ┌───┐ ┌─┐ \n", + "q19_0: ┤ H ├──■──┤M├───\n", + " └───┘┌─┴─┐└╥┘┌─┐\n", + "q19_1: ─────┤ X ├─╫─┤M├\n", + " └───┘ ║ └╥┘\n", + " c7: 2/═══════════╩══╩═\n", + " 0 1 " + ], + "text/html": [ + "
┌───┐ ┌─┐ \n", + "q19_0: ┤ H ├──■──┤M├───\n", + " └───┘┌─┴─┐└╥┘┌─┐\n", + "q19_1: ─────┤ X ├─╫─┤M├\n", + " └───┘ ║ └╥┘\n", + " c7: 2/═══════════╩══╩═\n", + " 0 1" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "---\n", + "\n" + ], + "metadata": { + "id": "WaHlX89nvtX3" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Optional - Additional Practice**\n", + "If you would like additional practice, try the problems below. The problems are optional gates content for more interesting operations with quantum gates. " + ], + "metadata": { + "id": "du4fBz_r8B1Q" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #1:** \n", + "Construct a 4-qubit Bernstein-Vazarani circuit using registers. " + ], + "metadata": { + "id": "n-OmBy6v8o-c" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "MkCl10I-Qczr" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "##### **Solution:**" + ], + "metadata": { + "id": "8E1BERSa8-mG" + } + }, + { + "cell_type": "code", + "source": [ + "qr = QuantumRegister(3, 'q')\n", + "anc = QuantumRegister(1, 'ancilla')\n", + "cr = ClassicalRegister(3, 'c')\n", + "qc = QuantumCircuit(qr, anc, cr)\n", + "\n", + "qc.x(anc[0])\n", + "qc.h(anc[0])\n", + "qc.h(qr[0:3])\n", + "qc.cx(qr[0:3], anc[0])\n", + "qc.h(qr[0:3])\n", + "qc.barrier(qr)\n", + "qc.measure(qr, cr)\n", + "\n", + "qc.draw()" + ], + "metadata": { + "id": "vAbVa-0S8-Oa", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 186 + }, + "outputId": "7ce6f16b-fde5-49fa-dd47-dbce2fc161bf" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ┌───┐ ┌───┐ ░ ┌─┐ \n", + " q_0: ┤ H ├───────■──┤ H ├───────────░─┤M├──────\n", + " ├───┤ │ └───┘┌───┐ ░ └╥┘┌─┐ \n", + " q_1: ┤ H ├───────┼────■──┤ H ├──────░──╫─┤M├───\n", + " ├───┤ │ │ └───┘┌───┐ ░ ║ └╥┘┌─┐\n", + " q_2: ┤ H ├───────┼────┼────■──┤ H ├─░──╫──╫─┤M├\n", + " ├───┤┌───┐┌─┴─┐┌─┴─┐┌─┴─┐└───┘ ░ ║ ║ └╥┘\n", + "ancilla: ┤ X ├┤ H ├┤ X ├┤ X ├┤ X ├─────────╫──╫──╫─\n", + " └───┘└───┘└───┘└───┘└───┘ ║ ║ ║ \n", + " c: 3/══════════════════════════════════╩══╩══╩═\n", + " 0 1 2 " + ], + "text/html": [ + "
┌───┐ ┌───┐ ░ ┌─┐ \n", + " q_0: ┤ H ├───────■──┤ H ├───────────░─┤M├──────\n", + " ├───┤ │ └───┘┌───┐ ░ └╥┘┌─┐ \n", + " q_1: ┤ H ├───────┼────■──┤ H ├──────░──╫─┤M├───\n", + " ├───┤ │ │ └───┘┌───┐ ░ ║ └╥┘┌─┐\n", + " q_2: ┤ H ├───────┼────┼────■──┤ H ├─░──╫──╫─┤M├\n", + " ├───┤┌───┐┌─┴─┐┌─┴─┐┌─┴─┐└───┘ ░ ║ ║ └╥┘\n", + "ancilla: ┤ X ├┤ H ├┤ X ├┤ X ├┤ X ├─────────╫──╫──╫─\n", + " └───┘└───┘└───┘└───┘└───┘ ║ ║ ║ \n", + " c: 3/══════════════════════════════════╩══╩══╩═\n", + " 0 1 2" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### **Exercise #2:** \n", + "Construct a 5-qubit GHZ circuit. " + ], + "metadata": { + "id": "Njl7VwbWQczf" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "Drq5EUuRasi_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "##### **Solution:**" + ], + "metadata": { + "id": "04L4_ffhREw2" + } + }, + { + "cell_type": "code", + "source": [ + "qc = QuantumCircuit(5)\n", + "qc.h(0)\n", + "qc.cx(0, range(1, 5))\n", + "qc.measure_all()\n", + "qc.draw()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 217 + }, + "id": "VyDFL6UKaYk5", + "outputId": "b86aedab-9c26-472e-e931-f430f5ec94f8" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ┌───┐ ░ ┌─┐ \n", + " q_0: ┤ H ├──■────■────■────■───░─┤M├────────────\n", + " └───┘┌─┴─┐ │ │ │ ░ └╥┘┌─┐ \n", + " q_1: ─────┤ X ├──┼────┼────┼───░──╫─┤M├─────────\n", + " └───┘┌─┴─┐ │ │ ░ ║ └╥┘┌─┐ \n", + " q_2: ──────────┤ X ├──┼────┼───░──╫──╫─┤M├──────\n", + " └───┘┌─┴─┐ │ ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ───────────────┤ X ├──┼───░──╫──╫──╫─┤M├───\n", + " └───┘┌─┴─┐ ░ ║ ║ ║ └╥┘┌─┐\n", + " q_4: ────────────────────┤ X ├─░──╫──╫──╫──╫─┤M├\n", + " └───┘ ░ ║ ║ ║ ║ └╥┘\n", + "meas: 5/═════════════════════════════╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4 " + ], + "text/html": [ + "
┌───┐ ░ ┌─┐ \n", + " q_0: ┤ H ├──■────■────■────■───░─┤M├────────────\n", + " └───┘┌─┴─┐ │ │ │ ░ └╥┘┌─┐ \n", + " q_1: ─────┤ X ├──┼────┼────┼───░──╫─┤M├─────────\n", + " └───┘┌─┴─┐ │ │ ░ ║ └╥┘┌─┐ \n", + " q_2: ──────────┤ X ├──┼────┼───░──╫──╫─┤M├──────\n", + " └───┘┌─┴─┐ │ ░ ║ ║ └╥┘┌─┐ \n", + " q_3: ───────────────┤ X ├──┼───░──╫──╫──╫─┤M├───\n", + " └───┘┌─┴─┐ ░ ║ ║ ║ └╥┘┌─┐\n", + " q_4: ────────────────────┤ X ├─░──╫──╫──╫──╫─┤M├\n", + " └───┘ ░ ║ ║ ║ ║ └╥┘\n", + "meas: 5/═════════════════════════════╩══╩══╩══╩══╩═\n", + " 0 1 2 3 4" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "---\n", + "\n", + "### **Conclusion:** \n", + "\n", + "This concludes the Quantum Gates concept review. " + ], + "metadata": { + "id": "biqjpjaGbD5A" + } + }, + { + "cell_type": "markdown", + "source": [ + "---\n", + "Author: Shwetha Jayaraj\n", + "